These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Thermoelectricity at the molecular scale: a large Seebeck effect in endohedral metallofullerenes. Lee SK; Buerkle M; Yamada R; Asai Y; Tada H Nanoscale; 2015 Dec; 7(48):20497-502. PubMed ID: 26583505 [TBL] [Abstract][Full Text] [Related]
7. Thermopower of benzenedithiol and C60 molecular junctions with Ni and Au electrodes. Lee SK; Ohto T; Yamada R; Tada H Nano Lett; 2014 Sep; 14(9):5276-80. PubMed ID: 25141337 [TBL] [Abstract][Full Text] [Related]
8. Electrical Conductance and Thermopower of β-Substituted Porphyrin Molecular Junctions─Synthesis and Transport. Xu H; Fan H; Luan Y; Yan S; Martin L; Miao R; Pauly F; Meyhofer E; Reddy P; Linke H; Wärnmark K J Am Chem Soc; 2023 Nov; 145(43):23541-23555. PubMed ID: 37874166 [TBL] [Abstract][Full Text] [Related]
9. Effect of length and contact chemistry on the electronic structure and thermoelectric properties of molecular junctions. Tan A; Balachandran J; Sadat S; Gavini V; Dunietz BD; Jang SY; Reddy P J Am Chem Soc; 2011 Jun; 133(23):8838-41. PubMed ID: 21563819 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of the Electronic Structure of Single-Molecule Junctions Based on Current-Voltage and Thermopower Measurements: Application to C Komoto Y; Isshiki Y; Fujii S; Nishino T; Kiguchi M Chem Asian J; 2017 Feb; 12(4):440-445. PubMed ID: 28035743 [TBL] [Abstract][Full Text] [Related]
12. Molecular design and control of fullerene-based bi-thermoelectric materials. Rincón-García L; Ismael AK; Evangeli C; Grace I; Rubio-Bollinger G; Porfyrakis K; Agraït N; Lambert CJ Nat Mater; 2016 Mar; 15(3):289-93. PubMed ID: 26641017 [TBL] [Abstract][Full Text] [Related]
13. Electrostatic control of thermoelectricity in molecular junctions. Kim Y; Jeong W; Kim K; Lee W; Reddy P Nat Nanotechnol; 2014 Nov; 9(11):881-5. PubMed ID: 25282046 [TBL] [Abstract][Full Text] [Related]
14. Mechanical tuning of conductance and thermopower in helicene molecular junctions. Vacek J; Chocholoušová JV; Stará IG; Starý I; Dubi Y Nanoscale; 2015 May; 7(19):8793-802. PubMed ID: 25905658 [TBL] [Abstract][Full Text] [Related]
15. Peltier cooling in molecular junctions. Cui L; Miao R; Wang K; Thompson D; Zotti LA; Cuevas JC; Meyhofer E; Reddy P Nat Nanotechnol; 2018 Feb; 13(2):122-127. PubMed ID: 29255291 [TBL] [Abstract][Full Text] [Related]
16. Influence of Quantum Interference on the Thermoelectric Properties of Molecular Junctions. Miao R; Xu H; Skripnik M; Cui L; Wang K; Pedersen KGL; Leijnse M; Pauly F; Wärnmark K; Meyhofer E; Reddy P; Linke H Nano Lett; 2018 Sep; 18(9):5666-5672. PubMed ID: 30084643 [TBL] [Abstract][Full Text] [Related]
17. Superexchange Coupling-Induced Enhancements of Thermoelectric Performance in Saturated Molecules. Cho N; Kang S; Lee H; Kang H; Kong GD; Yoon HJ Nano Lett; 2021 Jan; 21(1):360-366. PubMed ID: 33275442 [TBL] [Abstract][Full Text] [Related]
18. Thermoelectric voltage measurements of atomic and molecular wires using microheater-embedded mechanically-controllable break junctions. Morikawa T; Arima A; Tsutsui M; Taniguchi M Nanoscale; 2014 Jul; 6(14):8235-41. PubMed ID: 24930503 [TBL] [Abstract][Full Text] [Related]
19. Roles of vacuum tunnelling and contact mechanics in single-molecule thermopower. Tsutsui M; Yokota K; Morikawa T; Taniguchi M Sci Rep; 2017 Mar; 7():44276. PubMed ID: 28281684 [TBL] [Abstract][Full Text] [Related]