BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 27278090)

  • 1. Vertical transport and plant uptake of nanoparticles in a soil mesocosm experiment.
    Gogos A; Moll J; Klingenfuss F; van der Heijden M; Irin F; Green MJ; Zenobi R; Bucheli TD
    J Nanobiotechnology; 2016 Jun; 14(1):40. PubMed ID: 27278090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of nanoparticles on red clover and its symbiotic microorganisms.
    Moll J; Gogos A; Bucheli TD; Widmer F; van der Heijden MG
    J Nanobiotechnology; 2016 May; 14(1):36. PubMed ID: 27161241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth and Metabolic Responses of Rice (Oryza sativa L.) Cultivated in Phosphorus-Deficient Soil Amended with TiO
    Zahra Z; Waseem N; Zahra R; Lee H; Badshah MA; Mehmood A; Choi HK; Arshad M
    J Agric Food Chem; 2017 Jul; 65(28):5598-5606. PubMed ID: 28650653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of Effects of the Long-Term Exposure of Agricultural Crops to Carbon Nanotubes.
    Lahiani MH; Nima ZA; Villagarcia H; Biris AS; Khodakovskaya MV
    J Agric Food Chem; 2018 Jul; 66(26):6654-6662. PubMed ID: 28806524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of soil type on TiO
    Larue C; Baratange C; Vantelon D; Khodja H; Surblé S; Elger A; Carrière M
    Sci Total Environ; 2018 Jul; 630():609-617. PubMed ID: 29494970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cotransport of multi-walled carbon nanotubes and titanium dioxide nanoparticles in saturated porous media.
    Wang X; Cai L; Han P; Lin D; Kim H; Tong M
    Environ Pollut; 2014 Dec; 195():31-8. PubMed ID: 25194269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative evaluation of multi-walled carbon nanotube uptake in wheat and rapeseed.
    Larue C; Pinault M; Czarny B; Georgin D; Jaillard D; Bendiab N; Mayne-L'Hermite M; Taran F; Dive V; Carrière M
    J Hazard Mater; 2012 Aug; 227-228():155-63. PubMed ID: 22652322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative uptake and impact of TiO₂ nanoparticles in wheat and rapeseed.
    Larue C; Veronesi G; Flank AM; Surble S; Herlin-Boime N; Carrière M
    J Toxicol Environ Health A; 2012; 75(13-15):722-34. PubMed ID: 22788360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and versatile pre-treatment for quantification of multi-walled carbon nanotubes in the environment using microwave-induced heating.
    He Y; Al-Abed SR; Potter PM; Dionysiou DD
    Environ Sci Pollut Res Int; 2019 May; 26(14):13999-14012. PubMed ID: 30737716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Titanium as an indicator of residual soil on arid-land plants.
    Cook LL; McGonigle TP; Inouye RS
    J Environ Qual; 2009; 38(1):188-99. PubMed ID: 19141809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Titanium Dioxide Nanoparticles on Red Clover and Its Rhizobial Symbiont.
    Moll J; Okupnik A; Gogos A; Knauer K; Bucheli TD; van der Heijden MG; Widmer F
    PLoS One; 2016; 11(5):e0155111. PubMed ID: 27171465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limited transport of functionalized multi-walled carbon nanotubes in two natural soils.
    Kasel D; Bradford SA; Simůnek J; Pütz T; Vereecken H; Klumpp E
    Environ Pollut; 2013 Sep; 180():152-8. PubMed ID: 23770315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translocation of Sb and Ti in an undisturbed floodplain soil after application of Sb2O3 and TiO2 nanoparticles to the surface.
    Duester L; Prasse C; Vogel JV; Vink JP; Schaumann GE
    J Environ Monit; 2011 May; 13(5):1204-11. PubMed ID: 21403952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake and translocation of Ti from nanoparticles in crops and wetland plants.
    Jacob DL; Borchardt JD; Navaratnam L; Otte ML; Bezbaruah AN
    Int J Phytoremediation; 2013; 15(2):142-53. PubMed ID: 23487992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of dominant material properties on the stability and transport of TiO2 nanoparticles and carbon nanotubes in aquatic environments: from synthesis to fate.
    Liu X; Chen G; Keller AA; Su C
    Environ Sci Process Impacts; 2013 Jan; 15(1):169-89. PubMed ID: 24592435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of soil properties on the toxicity of TiO₂ nanoparticles on carbon mineralization and bacterial abundance.
    Simonin M; Guyonnet JP; Martins JM; Ginot M; Richaume A
    J Hazard Mater; 2015; 283():529-35. PubMed ID: 25464292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of different types of nanomaterials on their bioaccumulation in a paddy microcosm: a comparison of TiO2 nanoparticles and nanotubes.
    Yeo MK; Nam DH
    Environ Pollut; 2013 Jul; 178():166-72. PubMed ID: 23583672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes).
    Coll C; Notter D; Gottschalk F; Sun T; Som C; Nowack B
    Nanotoxicology; 2016; 10(4):436-44. PubMed ID: 26554717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of titanium dioxide doped multi-wall carbon nanotubes as promoter for the growth, biochemical indices of Sesamum indicum L. under heat stress conditions.
    Mahmoud NE; Abdelhameed RM
    Plant Physiol Biochem; 2023 Aug; 201():107844. PubMed ID: 37422946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface coating changes the physiological and biochemical impacts of nano-TiO
    Tan W; Du W; Barrios AC; Armendariz R; Zuverza-Mena N; Ji Z; Chang CH; Zink JI; Hernandez-Viezcas JA; Peralta-Videa JR; Gardea-Torresdey JL
    Environ Pollut; 2017 Mar; 222():64-72. PubMed ID: 28069370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.