These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 27278371)

  • 1. Sustained release of isoniazid from polylactide microspheres prepared using solid/oil drug loading method for tuberculosis treatment.
    Zhang L; Li Y; Zhang Y; Zhu C
    Sci China Life Sci; 2016 Jul; 59(7):724-31. PubMed ID: 27278371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alginate microspheres of isoniazid for oral sustained drug delivery.
    Rastogi R; Sultana Y; Aqil M; Ali A; Kumar S; Chuttani K; Mishra AK
    Int J Pharm; 2007 Apr; 334(1-2):71-7. PubMed ID: 17113732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isoniazid-gelatin conjugate microparticles containing rifampicin for the treatment of tuberculosis.
    Manca ML; Cassano R; Valenti D; Trombino S; Ferrarelli T; Picci N; Fadda AM; Manconi M
    J Pharm Pharmacol; 2013 Sep; 65(9):1302-11. PubMed ID: 23927468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genipin crosslinked ethyl cellulose-chitosan complex microspheres for anti-tuberculosis delivery.
    Feng H; Zhang L; Zhu C
    Colloids Surf B Biointerfaces; 2013 Mar; 103():530-7. PubMed ID: 23266829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis.
    Pandey R; Sharma A; Zahoor A; Sharma S; Khuller GK; Prasad B
    J Antimicrob Chemother; 2003 Dec; 52(6):981-6. PubMed ID: 14613962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microencapsulation of isoniazid in genipin-crosslinked gelatin-A-κ-carrageenan polyelectrolyte complex.
    Devi N; Maji TK
    Drug Dev Ind Pharm; 2010 Jan; 36(1):56-63. PubMed ID: 19681667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiolabeling and evaluation of alginate blend-isoniazid microspheres by 99mTc for the treatment of tuberculosis in rabbit model.
    Samad A; Sultana Y; Khar RK; Aqil M; Kalam MA; Chuttani K; Mishra AK
    J Drug Target; 2008 Jul; 16(6):509-15. PubMed ID: 18604664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isoniazid loaded core shell nanoparticles derived from PLGA-PEG-PLGA tri-block copolymers: in vitro and in vivo drug release.
    Gajendiran M; Gopi V; Elangovan V; Murali RV; Balasubramanian S
    Colloids Surf B Biointerfaces; 2013 Apr; 104():107-15. PubMed ID: 23298594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Respirable rifampicin-based microspheres containing isoniazid for tuberculosis treatment.
    Cassano R; Trombino S; Ferrarelli T; Mauro MV; Giraldi C; Manconi M; Fadda AM; Picci N
    J Biomed Mater Res A; 2012 Feb; 100(2):536-42. PubMed ID: 22162280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formulation and optimization of alkaline extracted ispaghula husk microparticles of isoniazid - in vitro and in vivo assessment.
    Maurya DP; Sultana Y; Aqil M; Kumar D; Chuttani K; Ali A; Mishra AK
    J Microencapsul; 2011; 28(6):472-82. PubMed ID: 21561399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of isoniazid and lamivudine co-loaded polymeric microspheres.
    Pandey G; Yadav SK; Mishra B
    Artif Cells Nanomed Biotechnol; 2016 Dec; 44(8):1867-1877. PubMed ID: 26631576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemotherapeutic potential of alginate-chitosan microspheres as anti-tubercular drug carriers.
    Pandey R; Khuller GK
    J Antimicrob Chemother; 2004 Apr; 53(4):635-40. PubMed ID: 14998985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhaled microparticles of antitubercular antibiotic for in vitro and in vivo alveolar macrophage targeting and activation of phagocytosis.
    Parikh R; Dalwadi S; Aboti P; Patel L
    J Antibiot (Tokyo); 2014 May; 67(5):387-94. PubMed ID: 24569669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of anti-tuberculosis drug concentration and distribution from sustained release microspheres in the vertebrae of a spinal tuberculosis rabbit model.
    Liu P; Jiang H; Li S; Lin Z; Jiang J
    J Orthop Res; 2017 Jan; 35(1):200-208. PubMed ID: 26996958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhalable microparticles containing large payload of anti-tuberculosis drugs.
    Muttil P; Kaur J; Kumar K; Yadav AB; Sharma R; Misra A
    Eur J Pharm Sci; 2007 Oct; 32(2):140-50. PubMed ID: 17681458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis.
    Pandey R; Khuller GK
    Tuberculosis (Edinb); 2005 Jul; 85(4):227-34. PubMed ID: 15922668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis.
    Ahmad Z; Sharma S; Khuller GK
    Int J Antimicrob Agents; 2005 Oct; 26(4):298-303. PubMed ID: 16154726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics and release of isoniazid from inhalable alginate/carrageenan microspheres.
    Eka Rani YD; Rahmadi M; Hariyadi DM
    Ther Deliv; 2023 Nov; 14(11):689-704. PubMed ID: 38084393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Therapeutic efficacy of Poly(DL-lactide-Co-Glycolide)-encapsulated antitubercular drugs against Mycobacterium tuberculosis infection induced in mice.
    Dutt M; Khuller GK
    Antimicrob Agents Chemother; 2001 Jan; 45(1):363-6. PubMed ID: 11121000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and characterization of spray-dried porous nanoaggregates for pulmonary delivery of anti-tubercular drugs.
    Kaur R; Garg T; Malik B; Gupta UD; Gupta P; Rath G; Goyal AK
    Drug Deliv; 2016; 23(3):882-7. PubMed ID: 24870203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.