These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
994 related articles for article (PubMed ID: 27278475)
1. A mechatronics platform to study prosthetic hand control using EMG signals. Geethanjali P Australas Phys Eng Sci Med; 2016 Sep; 39(3):765-71. PubMed ID: 27278475 [TBL] [Abstract][Full Text] [Related]
2. Comparative study of PCA in classification of multichannel EMG signals. Geethanjali P Australas Phys Eng Sci Med; 2015 Jun; 38(2):331-43. PubMed ID: 25860845 [TBL] [Abstract][Full Text] [Related]
3. Identification of a feature selection based pattern recognition scheme for finger movement recognition from multichannel EMG signals. Purushothaman G; Vikas R Australas Phys Eng Sci Med; 2018 Jun; 41(2):549-559. PubMed ID: 29744809 [TBL] [Abstract][Full Text] [Related]
4. Identification of motion from multi-channel EMG signals for control of prosthetic hand. Geethanjali P; Ray KK Australas Phys Eng Sci Med; 2011 Sep; 34(3):419-27. PubMed ID: 21667211 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of feature extraction techniques and classifiers for finger movement recognition using surface electromyography signal. Phukpattaranont P; Thongpanja S; Anam K; Al-Jumaily A; Limsakul C Med Biol Eng Comput; 2018 Dec; 56(12):2259-2271. PubMed ID: 29911250 [TBL] [Abstract][Full Text] [Related]
6. NLR, MLP, SVM, and LDA: a comparative analysis on EMG data from people with trans-radial amputation. Dellacasa Bellingegni A; Gruppioni E; Colazzo G; Davalli A; Sacchetti R; Guglielmelli E; Zollo L J Neuroeng Rehabil; 2017 Aug; 14(1):82. PubMed ID: 28807038 [TBL] [Abstract][Full Text] [Related]
7. Classification of ankle joint movements based on surface electromyography signals for rehabilitation robot applications. Al-Quraishi MS; Ishak AJ; Ahmad SA; Hasan MK; Al-Qurishi M; Ghapanchizadeh H; Alamri A Med Biol Eng Comput; 2017 May; 55(5):747-758. PubMed ID: 27484411 [TBL] [Abstract][Full Text] [Related]
9. Multiday Evaluation of Techniques for EMG-Based Classification of Hand Motions. Waris A; Niazi IK; Jamil M; Englehart K; Jensen W; Kamavuako EN IEEE J Biomed Health Inform; 2019 Jul; 23(4):1526-1534. PubMed ID: 30106701 [TBL] [Abstract][Full Text] [Related]
10. Effect of finite sample size on feature selection and classification: a simulation study. Way TW; Sahiner B; Hadjiiski LM; Chan HP Med Phys; 2010 Feb; 37(2):907-20. PubMed ID: 20229900 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of extreme learning machine for classification of individual and combined finger movements using electromyography on amputees and non-amputees. Anam K; Al-Jumaily A Neural Netw; 2017 Jan; 85():51-68. PubMed ID: 27814466 [TBL] [Abstract][Full Text] [Related]
12. Real-time intelligent pattern recognition algorithm for surface EMG signals. Khezri M; Jahed M Biomed Eng Online; 2007 Dec; 6():45. PubMed ID: 18053184 [TBL] [Abstract][Full Text] [Related]
13. Classification of finger movements for the dexterous hand prosthesis control with surface electromyography. Al-Timemy AH; Bugmann G; Escudero J; Outram N IEEE J Biomed Health Inform; 2013 May; 17(3):608-18. PubMed ID: 24592463 [TBL] [Abstract][Full Text] [Related]
14. A two-dimensional matrix image based feature extraction method for classification of sEMG: A comparative analysis based on SVM, KNN and RBF-NN. Wen T; Zhang Z; Qiu M; Zeng M; Luo W J Xray Sci Technol; 2017; 25(2):287-300. PubMed ID: 28269818 [TBL] [Abstract][Full Text] [Related]
15. A real-time EMG pattern recognition system based on linear-nonlinear feature projection for a multifunction myoelectric hand. Chu JU; Moon I; Mun MS IEEE Trans Biomed Eng; 2006 Nov; 53(11):2232-9. PubMed ID: 17073328 [TBL] [Abstract][Full Text] [Related]
16. Integrating heterogeneous classifier ensembles for EMG signal decomposition based on classifier agreement. Rasheed S; Stashuk DW; Kamel MS IEEE Trans Inf Technol Biomed; 2010 May; 14(3):866-82. PubMed ID: 19171524 [TBL] [Abstract][Full Text] [Related]
17. Surface electromyogram analysis of the direction of isometric torque generation by the first dorsal interosseous muscle. Zhou P; Suresh NL; Rymer WZ J Neural Eng; 2011 Jun; 8(3):036028. PubMed ID: 21566274 [TBL] [Abstract][Full Text] [Related]
18. Recognition of grasp types through principal components of DWT based EMG features. Kakoty NM; Hazarika SM IEEE Int Conf Rehabil Robot; 2011; 2011():5975398. PubMed ID: 22275601 [TBL] [Abstract][Full Text] [Related]
19. Support vector machine-based classification scheme for myoelectric control applied to upper limb. Oskoei MA; Hu H IEEE Trans Biomed Eng; 2008 Aug; 55(8):1956-65. PubMed ID: 18632358 [TBL] [Abstract][Full Text] [Related]
20. Extraction of neural control commands using myoelectric pattern recognition: a novel application in adults with cerebral palsy. Liu J; Li X; Marciniak C; Rymer WZ; Zhou P Int J Neural Syst; 2014 Nov; 24(7):1450022. PubMed ID: 25245096 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]