BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 27278741)

  • 1. Review of Texture Quantification of CT Images for Classification of Lung Diseases.
    Alemzadeh M; Boylan C; Kamath MV
    Crit Rev Biomed Eng; 2015; 43(2-3):183-200. PubMed ID: 27278741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic Obstructive Pulmonary Disease Quantification Using CT Texture Analysis and Densitometry: Results From the Danish Lung Cancer Screening Trial.
    Sørensen L; Nielsen M; Petersen J; Pedersen JH; Dirksen A; de Bruijne M
    AJR Am J Roentgenol; 2020 Jun; 214(6):1269-1279. PubMed ID: 32255690
    [No Abstract]   [Full Text] [Related]  

  • 3. Performance testing of several classifiers for differentiating obstructive lung diseases based on texture analysis at high-resolution computerized tomography (HRCT).
    Lee Y; Seo JB; Lee JG; Kim SS; Kim N; Kang SH
    Comput Methods Programs Biomed; 2009 Feb; 93(2):206-15. PubMed ID: 19070933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsupervised Discovery of Spatially-Informed Lung Texture Patterns for Pulmonary Emphysema: The MESA COPD Study.
    Yang J; Angelini ED; Balte PP; Hoffman EA; Austin JHM; Smith BM; Song J; Barr RG; Laine AF
    Med Image Comput Comput Assist Interv; 2017 Sep; 10433():116-124. PubMed ID: 29354811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Obstructive lung diseases: texture classification for differentiation at CT.
    Chabat F; Yang GZ; Hansell DM
    Radiology; 2003 Sep; 228(3):871-7. PubMed ID: 12869685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A support vector machine classifier reduces interscanner variation in the HRCT classification of regional disease pattern in diffuse lung disease: comparison to a Bayesian classifier.
    Chang Y; Lim J; Kim N; Seo JB; Lynch DA
    Med Phys; 2013 May; 40(5):051912. PubMed ID: 23635282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High resolution multidetector CT-aided tissue analysis and quantification of lung fibrosis.
    Zavaletta VA; Bartholmai BJ; Robb RA
    Acad Radiol; 2007 Jul; 14(7):772-87. PubMed ID: 17574128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulmonary CT image classification with evolutionary programming.
    Madsen MT; Uppaluri R; Hoffman EA; McLennan G
    Acad Radiol; 1999 Dec; 6(12):736-41. PubMed ID: 10887895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of pulmonary emphysema using local binary patterns.
    Sørensen L; Shaker SB; de Bruijne M
    IEEE Trans Med Imaging; 2010 Feb; 29(2):559-69. PubMed ID: 20129855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Texture-based quantification of pulmonary emphysema on high-resolution computed tomography: comparison with density-based quantification and correlation with pulmonary function test.
    Park YS; Seo JB; Kim N; Chae EJ; Oh YM; Lee SD; Lee Y; Kang SH
    Invest Radiol; 2008 Jun; 43(6):395-402. PubMed ID: 18496044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational analysis of thoracic multidetector row HRCT for segmentation and quantification of small airway air trapping and emphysema in obstructive pulmonary disease.
    Barbosa EM; Song G; Tustison N; Kreider M; Gee JC; Gefter WB; Torigian DA
    Acad Radiol; 2011 Oct; 18(10):1258-69. PubMed ID: 21893294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional selective-scale texture analysis of computed tomography pulmonary angiograms.
    Ganeshan B; Miles KA; Young RC; Chatwin CR
    Invest Radiol; 2008 Jun; 43(6):382-94. PubMed ID: 18496043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of pulmonary emphysema from lung computed tomography images.
    Uppaluri R; Mitsa T; Sonka M; Hoffman EA; McLennan G
    Am J Respir Crit Care Med; 1997 Jul; 156(1):248-54. PubMed ID: 9230756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A homological approach to a mathematical definition of pulmonary fibrosis and emphysema on computed tomography.
    Tanabe N; Kaji S; Sato S; Yokoyama T; Oguma T; Tanizawa K; Handa T; Sakajo T; Hirai T
    J Appl Physiol (1985); 2021 Aug; 131(2):601-612. PubMed ID: 34138650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Joint Lung CT Image Segmentation: A Hierarchical Bayesian Approach.
    Cheng W; Ma L; Yang T; Liang J; Zhang Y
    PLoS One; 2016; 11(9):e0162211. PubMed ID: 27611188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening for Early Lung Cancer, Chronic Obstructive Pulmonary Disease, and Cardiovascular Disease (the Big-3) Using Low-dose Chest Computed Tomography: Current Evidence and Technical Considerations.
    Heuvelmans MA; Vonder M; Rook M; Groen HJM; De Bock GH; Xie X; Ijzerman MJ; Vliegenthart R; Oudkerk M
    J Thorac Imaging; 2019 May; 34(3):160-169. PubMed ID: 30550403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Texture-based Quantification of Centrilobular Emphysema and Centrilobular Nodularity in Longitudinal CT Scans of Current and Former Smokers.
    Ginsburg SB; Zhao J; Humphries S; Jou S; Yagihashi K; Lynch DA; Schroeder JD;
    Acad Radiol; 2016 Nov; 23(11):1349-1358. PubMed ID: 27575837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recognizing common CT imaging signs of lung diseases through a new feature selection method based on Fisher criterion and genetic optimization.
    Liu X; Ma L; Song L; Zhao Y; Zhao X; Zhou C
    IEEE J Biomed Health Inform; 2015 Mar; 19(2):635-47. PubMed ID: 25486652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MDCT-based 3-D texture classification of emphysema and early smoking related lung pathologies.
    Xu Y; Sonka M; McLennan G; Guo J; Hoffman EA
    IEEE Trans Med Imaging; 2006 Apr; 25(4):464-75. PubMed ID: 16608061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative computed tomography of lung parenchyma in chronic obstructive pulmonary disease: an overview.
    Newell JD
    Proc Am Thorac Soc; 2008 Dec; 5(9):915-8. PubMed ID: 19056716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.