BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 27278775)

  • 1. Global, quantitative and dynamic mapping of protein subcellular localization.
    Itzhak DN; Tyanova S; Cox J; Borner GH
    Elife; 2016 Jun; 5():. PubMed ID: 27278775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Organellar Maps for Spatial Proteomics.
    Itzhak DN; Schessner JP; Borner GHH
    Curr Protoc Cell Biol; 2019 Jun; 83(1):e81. PubMed ID: 30489039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Mass Spectrometry-Based Approach for Mapping Protein Subcellular Localization Reveals the Spatial Proteome of Mouse Primary Neurons.
    Itzhak DN; Davies C; Tyanova S; Mishra A; Williamson J; Antrobus R; Cox J; Weekes MP; Borner GHH
    Cell Rep; 2017 Sep; 20(11):2706-2718. PubMed ID: 28903049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organellar Maps Through Proteomic Profiling - A Conceptual Guide.
    Borner GHH
    Mol Cell Proteomics; 2020 Jul; 19(7):1076-1087. PubMed ID: 32345598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomics methods for subcellular proteome analysis.
    Drissi R; Dubois ML; Boisvert FM
    FEBS J; 2013 Nov; 280(22):5626-34. PubMed ID: 24034475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organellar proteome analyses of ricin toxin-treated HeLa cells.
    Liao P; Li Y; Li H; Liu W
    Toxicol Ind Health; 2016 Jul; 32(7):1166-78. PubMed ID: 25227225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complementary methods to assist subcellular fractionation in organellar proteomics.
    Gauthier DJ; Lazure C
    Expert Rev Proteomics; 2008 Aug; 5(4):603-17. PubMed ID: 18761470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advancements in Subcellular Proteomics: Growing Impact of Organellar Protein Niches on the Understanding of Cell Biology.
    Bhushan V; Nita-Lazar A
    J Proteome Res; 2024 Mar; ():. PubMed ID: 38451675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multidimensional proteomics for cell biology.
    Larance M; Lamond AI
    Nat Rev Mol Cell Biol; 2015 May; 16(5):269-80. PubMed ID: 25857810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Full Characterization of Localization Diversity in the Human Protein Interactome.
    Cheng L; Fan K; Huang Y; Wang D; Leung KS
    J Proteome Res; 2017 Aug; 16(8):3019-3029. PubMed ID: 28707887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TRANSPIRE: A Computational Pipeline to Elucidate Intracellular Protein Movements from Spatial Proteomics Data Sets.
    Kennedy MA; Hofstadter WA; Cristea IM
    J Am Soc Mass Spectrom; 2020 Jul; 31(7):1422-1439. PubMed ID: 32401031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SubCellBarCode: Proteome-wide Mapping of Protein Localization and Relocalization.
    Orre LM; Vesterlund M; Pan Y; Arslan T; Zhu Y; Fernandez Woodbridge A; Frings O; Fredlund E; Lehtiö J
    Mol Cell; 2019 Jan; 73(1):166-182.e7. PubMed ID: 30609389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organellar proteomics: turning inventories into insights.
    Andersen JS; Mann M
    EMBO Rep; 2006 Sep; 7(9):874-9. PubMed ID: 16953200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep and fast label-free Dynamic Organellar Mapping.
    Schessner JP; Albrecht V; Davies AK; Sinitcyn P; Borner GHH
    Nat Commun; 2023 Aug; 14(1):5252. PubMed ID: 37644046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arabidopsis proteomics: a simple and standardizable workflow for quantitative proteome characterization.
    Rödiger A; Agne B; Baerenfaller K; Baginsky S
    Methods Mol Biol; 2014; 1072():275-88. PubMed ID: 24136529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative, high-resolution proteomics for data-driven systems biology.
    Cox J; Mann M
    Annu Rev Biochem; 2011; 80():273-99. PubMed ID: 21548781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative proteomic analysis to profile dynamic changes in the spatial distribution of cellular proteins.
    Yan W; Hwang D; Aebersold R
    Methods Mol Biol; 2008; 432():389-401. PubMed ID: 18370032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial-proteomics reveals phospho-signaling dynamics at subcellular resolution.
    Martinez-Val A; Bekker-Jensen DB; Steigerwald S; Koenig C; Østergaard O; Mehta A; Tran T; Sikorski K; Torres-Vega E; Kwasniewicz E; Brynjólfsdóttir SH; Frankel LB; Kjøbsted R; Krogh N; Lundby A; Bekker-Jensen S; Lund-Johansen F; Olsen JV
    Nat Commun; 2021 Dec; 12(1):7113. PubMed ID: 34876567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pattern Analysis of Organellar Maps for Interpretation of Proteomic Data.
    Burton JB; Carruthers NJ; Hou Z; Matherly LH; Stemmer PM
    Proteomes; 2022 May; 10(2):. PubMed ID: 35645376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of ubiquitination dependent dynamics in growth factor receptor signaling by quantitative proteomics.
    Akimov V; Rigbolt KT; Nielsen MM; Blagoev B
    Mol Biosyst; 2011 Dec; 7(12):3223-33. PubMed ID: 21956701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.