BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

474 related articles for article (PubMed ID: 27278853)

  • 1. Lens-based wavefront sensorless adaptive optics swept source OCT.
    Jian Y; Lee S; Ju MJ; Heisler M; Ding W; Zawadzki RJ; Bonora S; Sarunic MV
    Sci Rep; 2016 Jun; 6():27620. PubMed ID: 27278853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens.
    Bonora S; Jian Y; Zhang P; Zam A; Pugh EN; Zawadzki RJ; Sarunic MV
    Opt Express; 2015 Aug; 23(17):21931-41. PubMed ID: 26368169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography.
    Wong KS; Jian Y; Cua M; Bonora S; Zawadzki RJ; Sarunic MV
    Biomed Opt Express; 2015 Feb; 6(2):580-90. PubMed ID: 25780747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale sensorless adaptive optics OCT angiography system for in vivo human retinal imaging.
    Ju MJ; Heisler M; Wahl D; Jian Y; Sarunic MV
    J Biomed Opt; 2017 Nov; 22(12):1-10. PubMed ID: 29094524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging.
    Cua M; Wahl DJ; Zhao Y; Lee S; Bonora S; Zawadzki RJ; Jian Y; Sarunic MV
    Sci Rep; 2016 Sep; 6():32223. PubMed ID: 27599635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive optics optical coherence tomography for in vivo mouse retinal imaging.
    Jian Y; Zawadzki RJ; Sarunic MV
    J Biomed Opt; 2013 May; 18(5):56007. PubMed ID: 23644903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wide-field sensorless adaptive optics swept-source optical coherence tomographic angiography in rodents.
    Wei X; Hormel TT; Pi S; Wang B; Morrison JC; Jia Y
    Opt Lett; 2022 Oct; 47(19):5060-5063. PubMed ID: 36181186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudo-real-time retinal layer segmentation for high-resolution adaptive optics optical coherence tomography.
    Janpongsri W; Huang J; Ng R; Wahl DJ; Sarunic MV; Jian Y
    J Biophotonics; 2020 Aug; 13(8):e202000042. PubMed ID: 32421890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wavefront sensorless adaptive optics OCT with the DONE algorithm for
    Verstraete HRGW; Heisler M; Ju MJ; Wahl D; Bliek L; Kalkman J; Bonora S; Jian Y; Verhaegen M; Sarunic MV
    Biomed Opt Express; 2017 Apr; 8(4):2261-2275. PubMed ID: 28736670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral domain optical coherence tomography and adaptive optics: imaging photoreceptor layer morphology to interpret preclinical phenotypes.
    Rha J; Dubis AM; Wagner-Schuman M; Tait DM; Godara P; Schroeder B; Stepien K; Carroll J
    Adv Exp Med Biol; 2010; 664():309-16. PubMed ID: 20238030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noninvasive imaging of the tree shrew eye: Wavefront analysis and retinal imaging with correlative histology.
    Sajdak BS; Salmon AE; Cava JA; Allen KP; Freling S; Ramamirtham R; Norton TT; Roorda A; Carroll J
    Exp Eye Res; 2019 Aug; 185():107683. PubMed ID: 31158381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large field of view aberrations correction with deformable lenses and multi conjugate adaptive optics.
    Furieri T; Bassi A; Bonora S
    J Biophotonics; 2023 Dec; 16(12):e202300104. PubMed ID: 37556187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. State-of-the-art retinal optical coherence tomography.
    Drexler W; Fujimoto JG
    Prog Retin Eye Res; 2008 Jan; 27(1):45-88. PubMed ID: 18036865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wide-Field Three-Dimensional Depth-Invariant Cellular-Resolution Imaging of the Human Retina.
    Lee B; Jeong S; Lee J; Kim TS; Braaf B; Vakoc BJ; Oh WY
    Small; 2023 Mar; 19(11):e2203357. PubMed ID: 36642824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinal optical coherence tomography at 1 μm with dynamic focus control and axial motion tracking.
    Cua M; Lee S; Miao D; Ju MJ; Mackenzie PJ; Jian Y; Sarunic MV
    J Biomed Opt; 2016 Feb; 21(2):26007. PubMed ID: 26882449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive-glasses time-domain FFOCT for wide-field high-resolution retinal imaging with increased SNR.
    Scholler J; Groux K; Grieve K; Boccara C; Mecê P
    Opt Lett; 2020 Nov; 45(21):5901-5904. PubMed ID: 33137028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Visualization of Subtle Outer Retinal Pathology by En Face Optical Coherence Tomography and Correlation with Multi-Modal Imaging.
    Sampson DM; Alonso-Caneiro D; Chew AL; Lamey T; McLaren T; De Roach J; Chen FK
    PLoS One; 2016; 11(12):e0168275. PubMed ID: 27959968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
    Wojtkowski M; Srinivasan V; Fujimoto JG; Ko T; Schuman JS; Kowalczyk A; Duker JS
    Ophthalmology; 2005 Oct; 112(10):1734-46. PubMed ID: 16140383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy.
    Merino D; Dainty C; Bradu A; Podoleanu AG
    Opt Express; 2006 Apr; 14(8):3345-53. PubMed ID: 19516479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography.
    Srinivasan VJ; Ko TH; Wojtkowski M; Carvalho M; Clermont A; Bursell SE; Song QH; Lem J; Duker JS; Schuman JS; Fujimoto JG
    Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5522-8. PubMed ID: 17122144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.