These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1185 related articles for article (PubMed ID: 27279428)

  • 41. Global transcriptome‑wide analysis of the function of GDDR in acute gastric lesions.
    Zhang Z; Zhu J; Dong Y; Xu H; Jiang T; Li W; Xu D; Shi L; Yu J; Zhang J; Du J
    Mol Med Rep; 2017 Dec; 16(6):8673-8684. PubMed ID: 28990076
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nine hub genes as the potential indicator for the clinical outcome of diabetic nephropathy.
    Song X; Gong M; Chen Y; Liu H; Zhang J
    J Cell Physiol; 2019 Feb; 234(2):1461-1468. PubMed ID: 30078220
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comprehensive analysis of diabetic nephropathy expression profile based on weighted gene co-expression network analysis algorithm.
    Gholaminejad A; Fathalipour M; Roointan A
    BMC Nephrol; 2021 Jul; 22(1):245. PubMed ID: 34215202
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Integrated Bioinformatics and Clinical Correlation Analysis of Key Genes, Pathways, and Potential Therapeutic Agents Related to Diabetic Nephropathy.
    Chen S; Chen L; Jiang H
    Dis Markers; 2022; 2022():9204201. PubMed ID: 35637650
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Construction of an immunorelated protein-protein interaction network for clarifying the mechanism of burn.
    Gao Y; Nai W; Yang L; Lu Z; Shi P; Jin H; Wen H; Wang G
    Burns; 2016 Mar; 42(2):405-13. PubMed ID: 26739088
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of transcription factors related to diabetic tubulointerstitial injury.
    Liu J; Duan G; Yang W; Zhang S; Liu F; Peng Y; Sun L; Liu Y; Xiao L
    J Transl Med; 2023 Mar; 21(1):228. PubMed ID: 36978091
    [TBL] [Abstract][Full Text] [Related]  

  • 47. De novo transcriptome and expression profile analyses of the Asian corn borer (Ostrinia furnacalis) reveals relevant flubendiamide response genes.
    Cui L; Rui C; Yang D; Wang Z; Yuan H
    BMC Genomics; 2017 Jan; 18(1):20. PubMed ID: 28056803
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comprehensive bioinformatics analyses of Crohn's disease.
    Zhou Y; Zhan C; Huang Y; Liu H
    Mol Med Rep; 2017 Apr; 15(4):2267-2272. PubMed ID: 28260036
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Positioning of Tacrolimus for the Treatment of Diabetic Nephropathy Based on Computational Network Analysis.
    Aschauer C; Perco P; Heinzel A; Sunzenauer J; Oberbauer R
    PLoS One; 2017; 12(1):e0169518. PubMed ID: 28060893
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of pivotal genes and pathways for spinal cord injury via bioinformatics analysis.
    Zhu Z; Shen Q; Zhu L; Wei X
    Mol Med Rep; 2017 Oct; 16(4):3929-3937. PubMed ID: 28731189
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Whole transcriptome mapping reveals the lncRNA regulatory network of TFP5 treatment in diabetic nephropathy.
    Luo H; Yang L; Zhang G; Bao X; Ma D; Li B; Cao L; Cao S; Liu S; Bao L; E J; Zheng Y
    Genes Genomics; 2024 May; 46(5):621-635. PubMed ID: 38536617
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Expression analysis of microRNAs and their target genes during experimental diabetic renal lesions in rats administered with ginsenoside Rb1 and trigonelline.
    Shao X; Chen C; Miao C; Yu X; Li X; Geng J; Fan D; Lin X; Chen Z; Shi Y
    Pharmazie; 2019 Aug; 74(8):492-498. PubMed ID: 31526443
    [No Abstract]   [Full Text] [Related]  

  • 53. Vitiligo blood transcriptomics provides new insights into disease mechanisms and identifies potential novel therapeutic targets.
    Dey-Rao R; Sinha AA
    BMC Genomics; 2017 Jan; 18(1):109. PubMed ID: 28129744
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of Kidney Transcriptomic Profiles of Early and Advanced Diabetic Nephropathy Reveals Potential New Mechanisms for Disease Progression.
    Fan Y; Yi Z; D'Agati VD; Sun Z; Zhong F; Zhang W; Wen J; Zhou T; Li Z; He L; Zhang Q; Lee K; He JC; Wang N
    Diabetes; 2019 Dec; 68(12):2301-2314. PubMed ID: 31578193
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Differentially expressed long non‑coding RNAs and mRNAs in patients with IgA nephropathy.
    Zuo N; Li Y; Liu N; Wang L
    Mol Med Rep; 2017 Nov; 16(5):7724-7730. PubMed ID: 28944850
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Application of weighted gene co-expression network analysis to identify novel key genes in diabetic nephropathy.
    Wang Z; Chen X; Li C; Tang W
    J Diabetes Investig; 2022 Jan; 13(1):112-124. PubMed ID: 34245661
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Analyses of gene expression profiles in the rat dorsal horn of the spinal cord using RNA sequencing in chronic constriction injury rats.
    Du H; Shi J; Wang M; An S; Guo X; Wang Z
    J Neuroinflammation; 2018 Sep; 15(1):280. PubMed ID: 30253787
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of miRNAs-genes regulatory network in diabetic nephropathy based on bioinformatics analysis.
    Yang F; Cui Z; Deng H; Wang Y; Chen Y; Li H; Yuan L
    Medicine (Baltimore); 2019 Jul; 98(27):e16225. PubMed ID: 31277135
    [TBL] [Abstract][Full Text] [Related]  

  • 59. PPBP as a marker of diabetic nephropathy podocyte injury via Bioinformatics Analysis.
    Zhang F; Jiang N; Gao Y; Fan Z; Li Q; Ke G; Li B; Wu Q; Xu R; Liu S
    Biochem Biophys Res Commun; 2021 Nov; 577():165-172. PubMed ID: 34555684
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of pyroptosis-related genes and potential drugs in diabetic nephropathy.
    Yan M; Li W; Wei R; Li S; Liu Y; Huang Y; Zhang Y; Lu Z; Lu Q
    J Transl Med; 2023 Jul; 21(1):490. PubMed ID: 37480090
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 60.