These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 27279626)

  • 1. Millimeter scale electron conduction through exoelectrogenic mixed species biofilms.
    Li C; Lesnik KL; Fan Y; Liu H
    FEMS Microbiol Lett; 2016 Aug; 363(15):. PubMed ID: 27279626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced redox conductivity and enriched Geobacteraceae of exoelectrogenic biofilms in response to static magnetic field.
    Li C; Wang L; Liu H
    Appl Microbiol Biotechnol; 2018 Sep; 102(17):7611-7621. PubMed ID: 29923078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox Conductivity of Current-Producing Mixed Species Biofilms.
    Li C; Lesnik KL; Fan Y; Liu H
    PLoS One; 2016; 11(5):e0155247. PubMed ID: 27159497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Progress in enhancing electron transfer rate between exoelectrogenic microorganisms and electrode interface].
    Liu X; Zhang J; Zhang B; Yang C; Li F; Song H
    Sheng Wu Gong Cheng Xue Bao; 2021 Feb; 37(2):361-377. PubMed ID: 33645140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofilm as a redox conductor: a systematic study of the moisture and temperature dependence of its electrical properties.
    Phan H; Yates MD; Kirchhofer ND; Bazan GC; Tender LM; Nguyen TQ
    Phys Chem Chem Phys; 2016 Jul; 18(27):17815-21. PubMed ID: 27327215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures, Compositions, and Activities of Live Shewanella Biofilms Formed on Graphite Electrodes in Electrochemical Flow Cells.
    Kitayama M; Koga R; Kasai T; Kouzuma A; Watanabe K
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28625998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A framework for modeling electroactive microbial biofilms performing direct electron transfer.
    Korth B; Rosa LF; Harnisch F; Picioreanu C
    Bioelectrochemistry; 2015 Dec; 106(Pt A):194-206. PubMed ID: 25921352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing electron transfer with Escherichia coli: a method to examine exoelectronics in microbial fuel cell type systems.
    Sugnaux M; Mermoud S; da Costa AF; Happe M; Fischer F
    Bioresour Technol; 2013 Nov; 148():567-73. PubMed ID: 24080296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does bioelectrochemical cell configuration and anode potential affect biofilm response?
    Kumar A; Katuri K; Lens P; Leech D
    Biochem Soc Trans; 2012 Dec; 40(6):1308-14. PubMed ID: 23176473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical and microbiological response of exoelectrogenic biofilm to polyethylene microplastics in water.
    Wang S; Xu M; Jin B; Wünsch UJ; Su Y; Zhang Y
    Water Res; 2022 Mar; 211():118046. PubMed ID: 35030360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conductive properties of methanogenic biofilms.
    Li C; Lesnik KL; Liu H
    Bioelectrochemistry; 2018 Feb; 119():220-226. PubMed ID: 29078172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrokinetic analyses in biofilm anodes: Ohmic conduction of extracellular electron transfer.
    Lee HS
    Bioresour Technol; 2018 May; 256():509-514. PubMed ID: 29478785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical evidence for direct interspecies electron transfer between Geobacter sulfurreducens and Prosthecochloris aestuarii.
    Huang L; Liu X; Tang J; Yu L; Zhou S
    Bioelectrochemistry; 2019 Jun; 127():21-25. PubMed ID: 30641310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic modeling of spatial heterogeneity of biofilms in microbial fuel cells reveals substrate limitations in electrical current generation.
    Jayasinghe N; Franks A; Nevin KP; Mahadevan R
    Biotechnol J; 2014 Oct; 9(10):1350-61. PubMed ID: 25113946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoelectronic Investigation Reveals the Electrochemical Basis of Electrical Conductivity in Shewanella and Geobacter.
    Ding M; Shiu HY; Li SL; Lee CK; Wang G; Wu H; Weiss NO; Young TD; Weiss PS; Wong GC; Nealson KH; Huang Y; Duan X
    ACS Nano; 2016 Nov; 10(11):9919-9926. PubMed ID: 27787972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hardwiring microbes via direct interspecies electron transfer: mechanisms and applications.
    Cheng Q; Call DF
    Environ Sci Process Impacts; 2016 Aug; 18(8):968-80. PubMed ID: 27349520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly active bidirectional electron transfer by a self-assembled electroactive reduced-graphene-oxide-hybridized biofilm.
    Yong YC; Yu YY; Zhang X; Song H
    Angew Chem Int Ed Engl; 2014 Apr; 53(17):4480-3. PubMed ID: 24644059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells.
    Pinto D; Coradin T; Laberty-Robert C
    Bioelectrochemistry; 2018 Apr; 120():1-9. PubMed ID: 29132011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial nanowires and electroactive biofilms.
    Reguera G
    FEMS Microbiol Ecol; 2018 Jul; 94(7):. PubMed ID: 29931163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stay connected: Electrical conductivity of microbial aggregates.
    Li C; Lesnik KL; Liu H
    Biotechnol Adv; 2017 Nov; 35(6):669-680. PubMed ID: 28768145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.