These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 27279632)

  • 21. Progress in pathogenesis research of Ustilago maydis, and the metabolites involved along with their biosynthesis.
    Yu C; Qi J; Han H; Wang P; Liu C
    Mol Plant Pathol; 2023 May; 24(5):495-509. PubMed ID: 36808861
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An immunity-triggering effector from the Barley smut fungus Ustilago hordei resides in an Ustilaginaceae-specific cluster bearing signs of transposable element-assisted evolution.
    Ali S; Laurie JD; Linning R; Cervantes-Chávez JA; Gaudet D; Bakkeren G
    PLoS Pathog; 2014 Jul; 10(7):e1004223. PubMed ID: 24992661
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hxt1, a monosaccharide transporter and sensor required for virulence of the maize pathogen Ustilago maydis.
    Schuler D; Wahl R; Wippel K; Vranes M; Münsterkötter M; Sauer N; Kämper J
    New Phytol; 2015 May; 206(3):1086-1100. PubMed ID: 25678342
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity.
    Hemetsberger C; Herrberger C; Zechmann B; Hillmer M; Doehlemann G
    PLoS Pathog; 2012; 8(5):e1002684. PubMed ID: 22589719
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A kiwellin disarms the metabolic activity of a secreted fungal virulence factor.
    Han X; Altegoer F; Steinchen W; Binnebesel L; Schuhmacher J; Glatter T; Giammarinaro PI; Djamei A; Rensing SA; Reissmann S; Kahmann R; Bange G
    Nature; 2019 Jan; 565(7741):650-653. PubMed ID: 30651637
    [TBL] [Abstract][Full Text] [Related]  

  • 26. N-glycosylation of the protein disulfide isomerase Pdi1 ensures full Ustilago maydis virulence.
    Marín-Menguiano M; Moreno-Sánchez I; Barrales RR; Fernández-Álvarez A; Ibeas JI
    PLoS Pathog; 2019 Nov; 15(11):e1007687. PubMed ID: 31730668
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative transcriptome profiling identifies maize line specificity of fungal effectors in the maize-Ustilago maydis interaction.
    Schurack S; Depotter JRL; Gupta D; Thines M; Doehlemann G
    Plant J; 2021 May; 106(3):733-752. PubMed ID: 33570802
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ustilago maydis effector Jsi1 interacts with Topless corepressor, hijacking plant jasmonate/ethylene signaling.
    Darino M; Chia KS; Marques J; Aleksza D; Soto-Jiménez LM; Saado I; Uhse S; Borg M; Betz R; Bindics J; Zienkiewicz K; Feussner I; Petit-Houdenot Y; Djamei A
    New Phytol; 2021 Mar; 229(6):3393-3407. PubMed ID: 33247447
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcriptome Analysis of a Ustilago maydis ust1 Deletion Mutant Uncovers Involvement of Laccase and Polyketide Synthase Genes in Spore Development.
    Islamovic E; García-Pedrajas MD; Chacko N; Andrews DL; Covert SF; Gold SE
    Mol Plant Microbe Interact; 2015 Jan; 28(1):42-54. PubMed ID: 25226432
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conservation of the Ustilago maydis effector See1 in related smuts.
    Redkar A; Villajuana-Bonequi M; Doehlemann G
    Plant Signal Behav; 2015; 10(12):e1086855. PubMed ID: 26357869
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Signal peptide peptidase activity connects the unfolded protein response to plant defense suppression by Ustilago maydis.
    Pinter N; Hach CA; Hampel M; Rekhter D; Zienkiewicz K; Feussner I; Poehlein A; Daniel R; Finkernagel F; Heimel K
    PLoS Pathog; 2019 Apr; 15(4):e1007734. PubMed ID: 30998787
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigating the Ustilago maydis/Zea mays pathosystem: transcriptional responses and novel functional aspects of a fungal calcineurin regulatory B subunit.
    Donaldson ME; Meng S; Gagarinova A; Babu M; Lambie SC; Swiadek AA; Saville BJ
    Fungal Genet Biol; 2013; 58-59():91-104. PubMed ID: 23973481
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis.
    Kämper J; Kahmann R; Bölker M; Ma LJ; Brefort T; Saville BJ; Banuett F; Kronstad JW; Gold SE; Müller O; Perlin MH; Wösten HA; de Vries R; Ruiz-Herrera J; Reynaga-Peña CG; Snetselaar K; McCann M; Pérez-Martín J; Feldbrügge M; Basse CW; Steinberg G; Ibeas JI; Holloman W; Guzman P; Farman M; Stajich JE; Sentandreu R; González-Prieto JM; Kennell JC; Molina L; Schirawski J; Mendoza-Mendoza A; Greilinger D; Münch K; Rössel N; Scherer M; Vranes M; Ladendorf O; Vincon V; Fuchs U; Sandrock B; Meng S; Ho EC; Cahill MJ; Boyce KJ; Klose J; Klosterman SJ; Deelstra HJ; Ortiz-Castellanos L; Li W; Sanchez-Alonso P; Schreier PH; Häuser-Hahn I; Vaupel M; Koopmann E; Friedrich G; Voss H; Schlüter T; Margolis J; Platt D; Swimmer C; Gnirke A; Chen F; Vysotskaia V; Mannhaupt G; Güldener U; Münsterkötter M; Haase D; Oesterheld M; Mewes HW; Mauceli EW; DeCaprio D; Wade CM; Butler J; Young S; Jaffe DB; Calvo S; Nusbaum C; Galagan J; Birren BW
    Nature; 2006 Nov; 444(7115):97-101. PubMed ID: 17080091
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A rapid and efficient method for assessing pathogenicity of ustilago maydis on maize and teosinte lines.
    Chavan S; Smith SM
    J Vis Exp; 2014 Jan; (83):e50712. PubMed ID: 24430201
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel Secreted Effectors Conserved Among Smut Fungi Contribute to the Virulence of
    Schuster M; Schweizer G; Reißmann S; Happel P; Aßmann D; Rössel N; Güldener U; Mannhaupt G; Ludwig N; Winterberg S; Pellegrin C; Tanaka S; Vincon V; Presti LL; Wang L; Bender L; Gonzalez C; Vranes M; Kämper J; Seong K; Krasileva K; Kahmann R
    Mol Plant Microbe Interact; 2024 Mar; 37(3):250-263. PubMed ID: 38416124
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A conserved extracellular Ribo1 with broad-spectrum cytotoxic activity enables smut fungi to compete with host-associated bacteria.
    Ökmen B; Katzy P; Huang L; Wemhöner R; Doehlemann G
    New Phytol; 2023 Dec; 240(5):1976-1989. PubMed ID: 37680042
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The secretome of the maize pathogen Ustilago maydis.
    Mueller O; Kahmann R; Aguilar G; Trejo-Aguilar B; Wu A; de Vries RP
    Fungal Genet Biol; 2008 Aug; 45 Suppl 1():S63-70. PubMed ID: 18456523
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A conserved enzyme of smut fungi facilitates cell-to-cell extension in the plant bundle sheath.
    Ökmen B; Jaeger E; Schilling L; Finke N; Klemd A; Lee YJ; Wemhöner R; Pauly M; Neumann U; Doehlemann G
    Nat Commun; 2022 Oct; 13(1):6003. PubMed ID: 36224193
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of Ustilago maydis as a fungal model for root infection studies.
    Mazaheri-Naeini M; Sabbagh SK; Martinez Y; Séjalon-Delmas N; Roux C
    Fungal Biol; 2015 Mar; 119(2-3):145-53. PubMed ID: 25749366
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dissecting defense-related and developmental transcriptional responses of maize during Ustilago maydis infection and subsequent tumor formation.
    Basse CW
    Plant Physiol; 2005 Jul; 138(3):1774-84. PubMed ID: 15980197
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.