These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 27279632)

  • 81. The Unfolded Protein Response Regulates Pathogenic Development of Ustilago maydis by Rok1-Dependent Inhibition of Mating-Type Signaling.
    Schmitz L; Schwier MA; Heimel K
    mBio; 2019 Dec; 10(6):. PubMed ID: 31848283
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Protein glycosylation in the phytopathogen Ustilago maydis: From core oligosaccharide synthesis to the ER glycoprotein quality control system, a genomic analysis.
    Fernández-Alvarez A; Elías-Villalobos A; Ibeas JI
    Fungal Genet Biol; 2010 Sep; 47(9):727-35. PubMed ID: 20554055
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Defects in mitochondrial and peroxisomal β-oxidation influence virulence in the maize pathogen Ustilago maydis.
    Kretschmer M; Klose J; Kronstad JW
    Eukaryot Cell; 2012 Aug; 11(8):1055-66. PubMed ID: 22707484
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Identification and characterization of secreted and pathogenesis-related proteins in Ustilago maydis.
    Müller O; Schreier PH; Uhrig JF
    Mol Genet Genomics; 2008 Jan; 279(1):27-39. PubMed ID: 17917743
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Effector-mediated relocalization of a maize lipoxygenase protein triggers susceptibility to Ustilago maydis.
    Saado I; Chia KS; Betz R; Alcântara A; Pettkó-Szandtner A; Navarrete F; D'Auria JC; Kolomiets MV; Melzer M; Feussner I; Djamei A
    Plant Cell; 2022 Jul; 34(7):2785-2805. PubMed ID: 35512341
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Use of PCR to detect infection of differentially susceptible maize cultivars using Ustilago maydis strains of variable virulence.
    Martínez-Espinoza AD; León-Ramírez CG; Singh N; Ruiz-Herrera J
    Int Microbiol; 2003 Jun; 6(2):117-20. PubMed ID: 12768432
    [TBL] [Abstract][Full Text] [Related]  

  • 87. A ferroxidation/permeation iron uptake system is required for virulence in Ustilago maydis.
    Eichhorn H; Lessing F; Winterberg B; Schirawski J; Kämper J; Müller P; Kahmann R
    Plant Cell; 2006 Nov; 18(11):3332-45. PubMed ID: 17138696
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Utilizing virus-induced gene silencing for the functional characterization of maize genes during infection with the fungal pathogen Ustilago maydis.
    van der Linde K; Doehlemann G
    Methods Mol Biol; 2013; 975():47-60. PubMed ID: 23386294
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Positively Selected Effector Genes and Their Contribution to Virulence in the Smut Fungus Sporisorium reilianum.
    Schweizer G; Münch K; Mannhaupt G; Schirawski J; Kahmann R; Dutheil JY
    Genome Biol Evol; 2018 Feb; 10(2):629-645. PubMed ID: 29390140
    [TBL] [Abstract][Full Text] [Related]  

  • 90. An Ustilago maydis gene involved in H2O2 detoxification is required for virulence.
    Molina L; Kahmann R
    Plant Cell; 2007 Jul; 19(7):2293-309. PubMed ID: 17616735
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Phytohormone sensing in the biotrophic fungus Ustilago maydis - the dual role of the transcription factor Rss1.
    Rabe F; Seitner D; Bauer L; Navarrete F; Czedik-Eysenberg A; Rabanal FA; Djamei A
    Mol Microbiol; 2016 Oct; 102(2):290-305. PubMed ID: 27387604
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Septation of infectious hyphae is critical for appressoria formation and virulence in the smut fungus Ustilago maydis.
    Freitag J; Lanver D; Böhmer C; Schink KO; Bölker M; Sandrock B
    PLoS Pathog; 2011 May; 7(5):e1002044. PubMed ID: 21625538
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Endophytic Fusarium verticillioides reduces disease severity caused by Ustilago maydis on maize.
    Lee K; Pan JJ; May G
    FEMS Microbiol Lett; 2009 Oct; 299(1):31-7. PubMed ID: 19694816
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Degradation of the plant defence hormone salicylic acid by the biotrophic fungus Ustilago maydis.
    Rabe F; Ajami-Rashidi Z; Doehlemann G; Kahmann R; Djamei A
    Mol Microbiol; 2013 Jul; 89(1):179-88. PubMed ID: 23692401
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Metamorphosis of the Basidiomycota Ustilago maydis: transformation of yeast-like cells into basidiocarps.
    Cabrera-Ponce JL; León-Ramírez CG; Verver-Vargas A; Palma-Tirado L; Ruiz-Herrera J
    Fungal Genet Biol; 2012 Oct; 49(10):765-71. PubMed ID: 22921263
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Transcriptome analysis of smut fungi reveals widespread intergenic transcription and conserved antisense transcript expression.
    Donaldson ME; Ostrowski LA; Goulet KM; Saville BJ
    BMC Genomics; 2017 May; 18(1):340. PubMed ID: 28464849
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Functional analysis of the pH responsive pathway Pal/Rim in the phytopathogenic basidiomycete Ustilago maydis.
    Cervantes-Chávez JA; Ortiz-Castellanos L; Tejeda-Sartorius M; Gold S; Ruiz-Herrera J
    Fungal Genet Biol; 2010 May; 47(5):446-57. PubMed ID: 20153837
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Characterization of the largest effector gene cluster of Ustilago maydis.
    Brefort T; Tanaka S; Neidig N; Doehlemann G; Vincon V; Kahmann R
    PLoS Pathog; 2014 Jul; 10(7):e1003866. PubMed ID: 24992561
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Maize susceptibility to Ustilago maydis is influenced by genetic and chemical perturbation of carbohydrate allocation.
    Kretschmer M; Croll D; Kronstad JW
    Mol Plant Pathol; 2017 Dec; 18(9):1222-1237. PubMed ID: 27564861
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Ustilago maydis reprograms cell proliferation in maize anthers.
    Gao L; Kelliher T; Nguyen L; Walbot V
    Plant J; 2013 Sep; 75(6):903-14. PubMed ID: 23795972
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.