These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 27279660)
1. Data augmentation for models based on rejection sampling. Rao V; Lin L; Dunson DB Biometrika; 2016 Jun; 103(2):319-335. PubMed ID: 27279660 [TBL] [Abstract][Full Text] [Related]
2. A Monte Carlo Metropolis-Hastings algorithm for sampling from distributions with intractable normalizing constants. Liang F; Jin IH Neural Comput; 2013 Aug; 25(8):2199-234. PubMed ID: 23607562 [TBL] [Abstract][Full Text] [Related]
3. An Auxiliary Variable Method for Markov Chain Monte Carlo Algorithms in High Dimension. Marnissi Y; Chouzenoux E; Benazza-Benyahia A; Pesquet JC Entropy (Basel); 2018 Feb; 20(2):. PubMed ID: 33265201 [TBL] [Abstract][Full Text] [Related]
4. Bayesian experimental design for models with intractable likelihoods. Drovandi CC; Pettitt AN Biometrics; 2013 Dec; 69(4):937-48. PubMed ID: 24131221 [TBL] [Abstract][Full Text] [Related]
5. Bayesian adaptation of chaos representations using variational inference and sampling on geodesics. Tsilifis P; Ghanem RG Proc Math Phys Eng Sci; 2018 Sep; 474(2217):20180285. PubMed ID: 30333707 [TBL] [Abstract][Full Text] [Related]
6. Learning Deep Generative Models With Doubly Stochastic Gradient MCMC. Du C; Zhu J; Zhang B IEEE Trans Neural Netw Learn Syst; 2018 Jul; 29(7):3084-3096. PubMed ID: 28678716 [TBL] [Abstract][Full Text] [Related]
7. Pseudo-Marginal Bayesian Inference for Gaussian Processes. Filippone M; Girolami M IEEE Trans Pattern Anal Mach Intell; 2014 Nov; 36(11):2214-26. PubMed ID: 26353062 [TBL] [Abstract][Full Text] [Related]
8. Alive SMC(2) : Bayesian model selection for low-count time series models with intractable likelihoods. Drovandi CC; McCutchan RA Biometrics; 2016 Jun; 72(2):344-53. PubMed ID: 26584211 [TBL] [Abstract][Full Text] [Related]
9. Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo. Golightly A; Wilkinson DJ Interface Focus; 2011 Dec; 1(6):807-20. PubMed ID: 23226583 [TBL] [Abstract][Full Text] [Related]
10. Unbiased Bayesian inference for population Markov jump processes via random truncations. Georgoulas A; Hillston J; Sanguinetti G Stat Comput; 2017; 27(4):991-1002. PubMed ID: 28690370 [TBL] [Abstract][Full Text] [Related]
11. Parametric and nonparametric population methods: their comparative performance in analysing a clinical dataset and two Monte Carlo simulation studies. Bustad A; Terziivanov D; Leary R; Port R; Schumitzky A; Jelliffe R Clin Pharmacokinet; 2006; 45(4):365-83. PubMed ID: 16584284 [TBL] [Abstract][Full Text] [Related]
12. Functional principal component models for sparse and irregularly spaced data by Bayesian inference. Ye J J Appl Stat; 2024; 51(7):1287-1317. PubMed ID: 38835826 [TBL] [Abstract][Full Text] [Related]
13. Bayesian inference for Markov jump processes with informative observations. Golightly A; Wilkinson DJ Stat Appl Genet Mol Biol; 2015 Apr; 14(2):169-88. PubMed ID: 25720091 [TBL] [Abstract][Full Text] [Related]
14. Hamiltonian Monte Carlo acceleration using surrogate functions with random bases. Zhang C; Shahbaba B; Zhao H Stat Comput; 2017 Nov; 27(6):1473-1490. PubMed ID: 28983154 [TBL] [Abstract][Full Text] [Related]
15. Bayesian inference of risk ratio of two proportions using a double sampling scheme. Rahardja D; Young DM J Biopharm Stat; 2011 May; 21(3):393-404. PubMed ID: 21442515 [TBL] [Abstract][Full Text] [Related]
16. Variational Hybrid Monte Carlo for Efficient Multi-Modal Data Sampling. Sun S; Zhao J; Gu M; Wang S Entropy (Basel); 2023 Mar; 25(4):. PubMed ID: 37190347 [TBL] [Abstract][Full Text] [Related]
17. Scalable Bayesian Inference for Coupled Hidden Markov and Semi-Markov Models. Touloupou P; Finkenstädt B; Spencer SEF J Comput Graph Stat; 2020; 29(2):238-249. PubMed ID: 32939192 [TBL] [Abstract][Full Text] [Related]
18. Bayesian inference for finite mixtures of univariate and multivariate skew-normal and skew-t distributions. Frühwirth-Schnatter S; Pyne S Biostatistics; 2010 Apr; 11(2):317-36. PubMed ID: 20110247 [TBL] [Abstract][Full Text] [Related]
19. Bayesian Inference for Mixed Model-Based Genome-Wide Analysis of Expression Quantitative Trait Loci by Gibbs Sampling. Lee C Front Genet; 2019; 10():199. PubMed ID: 30967893 [TBL] [Abstract][Full Text] [Related]
20. A general construction for parallelizing Metropolis-Hastings algorithms. Calderhead B Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17408-13. PubMed ID: 25422442 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]