BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 27280379)

  • 21. Managing aquatic ecosystems and water resources under multiple stress--an introduction to the MARS project.
    Hering D; Carvalho L; Argillier C; Beklioglu M; Borja A; Cardoso AC; Duel H; Ferreira T; Globevnik L; Hanganu J; Hellsten S; Jeppesen E; Kodeš V; Solheim AL; Nõges T; Ormerod S; Panagopoulos Y; Schmutz S; Venohr M; Birk S
    Sci Total Environ; 2015 Jan; 503-504():10-21. PubMed ID: 25017638
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metropolitan water purification facilities towards variability mitigation of the renewable resources: Optimal bid method for small hydropower generators.
    Lee JH; Kim KH; Chu YO; Oh JY; Yoon YT; Kim SJ
    Heliyon; 2023 Jun; 9(6):e17192. PubMed ID: 37408907
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluating and optimizing the operation of the hydropower system in the Upper Yellow River: A general LINGO-based integrated framework.
    Si Y; Li X; Yin D; Liu R; Wei J; Huang Y; Li T; Liu J; Gu S; Wang G
    PLoS One; 2018; 13(1):e0191483. PubMed ID: 29370206
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of mitigation measures to reduce hydropeaking impacts on river ecosystems - a case study from the Swiss Alps.
    Tonolla D; Bruder A; Schweizer S
    Sci Total Environ; 2017 Jan; 574():594-604. PubMed ID: 27653558
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Systematic high-resolution assessment of global hydropower potential.
    Hoes OA; Meijer LJ; van der Ent RJ; van de Giesen NC
    PLoS One; 2017; 12(2):e0171844. PubMed ID: 28178329
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Managing sustainable development conflicts: the impact of stakeholders in small-scale hydropower schemes.
    Watkin LJ; Kemp PS; Williams ID; Harwood IA
    Environ Manage; 2012 Jun; 49(6):1208-23. PubMed ID: 22525992
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Current and Future Environmental Balance of Small-Scale Run-of-River Hydropower.
    Gallagher J; Styles D; McNabola A; Williams AP
    Environ Sci Technol; 2015 May; 49(10):6344-51. PubMed ID: 25909899
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Value of ecosystem hydropower service and its impact on the payment for ecosystem services.
    Fu B; Wang YK; Xu P; Yan K; Li M
    Sci Total Environ; 2014 Feb; 472():338-46. PubMed ID: 24291631
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Avoiding ecosystem and social impacts of hydropower, wind, and solar in Southern Africa's low-carbon electricity system.
    Wu GC; Deshmukh R; Trainor A; Uppal A; Chowdhury AFMK; Baez C; Martin E; Higgins J; Mileva A; Ndhlukula K
    Nat Commun; 2024 Feb; 15(1):1083. PubMed ID: 38316824
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydropower: A low-hanging sour-sweet energy option for India.
    Pandit MK; Manish K; Singh G; Chowdhury A
    Heliyon; 2023 Jun; 9(6):e17151. PubMed ID: 37484265
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Projected Increase in Hydropower Production in India under Climate Change.
    Ali SA; Aadhar S; Shah HL; Mishra V
    Sci Rep; 2018 Aug; 8(1):12450. PubMed ID: 30127444
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A dataset of eco-evidence tools to inform early-stage environmental impact assessments of hydropower development.
    McManamay RA; Parish ES; DeRolph CR
    Data Brief; 2020 Jun; 30():105629. PubMed ID: 32426425
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Determining the net environmental performance of hydropower: A new methodological approach by combining life cycle and ecosystem services assessment.
    Briones-Hidrovo A; Uche J; Martínez-Gracia A
    Sci Total Environ; 2020 Apr; 712():136369. PubMed ID: 31931209
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How run-of-river operation affects hydropower generation and value.
    Jager HI; Bevelhimer MS
    Environ Manage; 2007 Dec; 40(6):1004-15. PubMed ID: 17891438
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A systematic framework for the assessment of sustainable hydropower potential in a river basin - The case of the upper Indus.
    Dhaubanjar S; Lutz AF; Gernaat DEHJ; Nepal S; Smolenaars W; Pradhananga S; Biemans H; Ludwig F; Shrestha AB; Immerzeel WW
    Sci Total Environ; 2021 Sep; 786():147142. PubMed ID: 33965826
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Big concerns with small projects: Evaluating the socio-ecological impacts of small hydropower projects in India.
    Jumani S; Rao S; Machado S; Prakash A
    Ambio; 2017 May; 46(4):500-511. PubMed ID: 28074405
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Environmental flows or economic woes-Hydropower under global energy market changes.
    Schillinger M; Weigt H; Hirsch PE
    PLoS One; 2020; 15(8):e0236730. PubMed ID: 32756584
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increased hydropower but with an elevated risk of reservoir operations in India under the warming climate.
    Chuphal DS; Mishra V
    iScience; 2023 Feb; 26(2):105986. PubMed ID: 36756370
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of multicriteria analysis (MCA) for sustainable hydropower planning and management.
    Vassoney E; Mammoliti Mochet A; Comoglio C
    J Environ Manage; 2017 Jul; 196():48-55. PubMed ID: 28284137
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessing the water and carbon footprint of hydropower stations at a national scale.
    Wang J; Chen X; Liu Z; Frans VF; Xu Z; Qiu X; Xu F; Li Y
    Sci Total Environ; 2019 Aug; 676():595-612. PubMed ID: 31051366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.