These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 27280860)
1. Cytocompatible, Photoreversible, and Self-Healing Hydrogels for Regulating Bone Marrow Stromal Cell Differentiation. Yu L; Xu K; Ge L; Wan W; Darabi A; Xing M; Zhong W Macromol Biosci; 2016 Sep; 16(9):1381-90. PubMed ID: 27280860 [TBL] [Abstract][Full Text] [Related]
2. Calcium deposition in photocrosslinked poly(Pro-Hyp-Gly) hydrogels encapsulated rat bone marrow stromal cells. Nurlidar F; Yamane K; Kobayashi M; Terada K; Ando T; Tanihara M J Tissue Eng Regen Med; 2018 Mar; 12(3):e1360-e1369. PubMed ID: 28715113 [TBL] [Abstract][Full Text] [Related]
3. Photo-cured hyaluronic acid-based hydrogels containing growth and differentiation factor 5 (GDF-5) for bone tissue regeneration. Bae MS; Ohe JY; Lee JB; Heo DN; Byun W; Bae H; Kwon YD; Kwon IK Bone; 2014 Feb; 59():189-98. PubMed ID: 24291420 [TBL] [Abstract][Full Text] [Related]
4. Effective and durable genetic modification of human mesenchymal stem cells via controlled release of rAAV vectors from self-assembling peptide hydrogels with a maintained differentiation potency. Rey-Rico A; Venkatesan JK; Frisch J; Schmitt G; Monge-Marcet A; Lopez-Chicon P; Mata A; Semino C; Madry H; Cucchiarini M Acta Biomater; 2015 May; 18():118-27. PubMed ID: 25712390 [TBL] [Abstract][Full Text] [Related]
5. Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. Dhivya S; Saravanan S; Sastry TP; Selvamurugan N J Nanobiotechnology; 2015 Jun; 13():40. PubMed ID: 26065678 [TBL] [Abstract][Full Text] [Related]
6. Effect of citric acid crosslinking cellulose-based hydrogels on osteogenic differentiation. Raucci MG; Alvarez-Perez MA; Demitri C; Giugliano D; De Benedictis V; Sannino A; Ambrosio L J Biomed Mater Res A; 2015 Jun; 103(6):2045-56. PubMed ID: 25293976 [TBL] [Abstract][Full Text] [Related]
7. Autonomous osteogenic differentiation of hASCs encapsulated in methacrylated gellan-gum hydrogels. Oliveira MB; Custódio CA; Gasperini L; Reis RL; Mano JF Acta Biomater; 2016 Sep; 41():119-32. PubMed ID: 27233132 [TBL] [Abstract][Full Text] [Related]
8. The effect of heparin-functionalized PEG hydrogels on three-dimensional human mesenchymal stem cell osteogenic differentiation. Benoit DS; Durney AR; Anseth KS Biomaterials; 2007 Jan; 28(1):66-77. PubMed ID: 16963119 [TBL] [Abstract][Full Text] [Related]
9. Development of tailored and self-mineralizing citric acid-crosslinked hydrogels for in situ bone regeneration. Sánchez-Ferrero A; Mata Á; Mateos-Timoneda MA; Rodríguez-Cabello JC; Alonso M; Planell J; Engel E Biomaterials; 2015 Nov; 68():42-53. PubMed ID: 26264645 [TBL] [Abstract][Full Text] [Related]
10. Functionalizable and nonfouling zwitterionic carboxybetaine hydrogels with a carboxybetaine dimethacrylate crosslinker. Carr LR; Xue H; Jiang S Biomaterials; 2011 Feb; 32(4):961-8. PubMed ID: 20970184 [TBL] [Abstract][Full Text] [Related]
11. In vitro osteogenic potential of collagen/chitosan-based hydrogels-silica particles hybrids in human bone marrow-derived mesenchymal stromal cell cultures. Filipowska J; Lewandowska-Łańcucka J; Gilarska A; Niedźwiedzki Ł; Nowakowska M Int J Biol Macromol; 2018 Jul; 113():692-700. PubMed ID: 29525638 [TBL] [Abstract][Full Text] [Related]
12. Photo-cured hyaluronic acid-based hydrogels containing simvastatin as a bone tissue regeneration scaffold. Bae MS; Yang DH; Lee JB; Heo DN; Kwon YD; Youn IC; Choi K; Hong JH; Kim GT; Choi YS; Hwang EH; Kwon IK Biomaterials; 2011 Nov; 32(32):8161-71. PubMed ID: 21821281 [TBL] [Abstract][Full Text] [Related]
13. Comparison of cell-loading methods in hydrogel systems. Ma J; Yang F; Both SK; Kersten-Niessen M; Bongio M; Pan J; Cui FZ; Kasper FK; Mikos AG; Jansen JA; van den Beucken JJ J Biomed Mater Res A; 2014 Apr; 102(4):935-46. PubMed ID: 23650286 [TBL] [Abstract][Full Text] [Related]
14. Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity. Mironi-Harpaz I; Wang DY; Venkatraman S; Seliktar D Acta Biomater; 2012 May; 8(5):1838-48. PubMed ID: 22285429 [TBL] [Abstract][Full Text] [Related]
15. Fast-forming BMSC-encapsulating hydrogels through bioorthogonal reaction for osteogenic differentiation. Zhang Y; Chen H; Zhang T; Zan Y; Ni T; Liu M; Pei R Biomater Sci; 2018 Sep; 6(10):2578-2581. PubMed ID: 30178816 [TBL] [Abstract][Full Text] [Related]
16. 3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity. Poldervaart MT; Goversen B; de Ruijter M; Abbadessa A; Melchels FPW; Öner FC; Dhert WJA; Vermonden T; Alblas J PLoS One; 2017; 12(6):e0177628. PubMed ID: 28586346 [TBL] [Abstract][Full Text] [Related]
17. Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture. Lou J; Stowers R; Nam S; Xia Y; Chaudhuri O Biomaterials; 2018 Feb; 154():213-222. PubMed ID: 29132046 [TBL] [Abstract][Full Text] [Related]
18. Dextran-based hydrogel formed by thiol-Michael addition reaction for 3D cell encapsulation. Liu ZQ; Wei Z; Zhu XL; Huang GY; Xu F; Yang JH; Osada Y; Zrínyi M; Li JH; Chen YM Colloids Surf B Biointerfaces; 2015 Apr; 128():140-148. PubMed ID: 25744162 [TBL] [Abstract][Full Text] [Related]
19. Bioprinting Organotypic Hydrogels with Improved Mesenchymal Stem Cell Remodeling and Mineralization Properties for Bone Tissue Engineering. Duarte Campos DF; Blaeser A; Buellesbach K; Sen KS; Xun W; Tillmann W; Fischer H Adv Healthc Mater; 2016 Jun; 5(11):1336-45. PubMed ID: 27072652 [TBL] [Abstract][Full Text] [Related]
20. The biological performance of cell-containing phospholipid polymer hydrogels in bulk and microscale form. Xu Y; Jang K; Konno T; Ishihara K; Mawatari K; Kitamori T Biomaterials; 2010 Dec; 31(34):8839-46. PubMed ID: 20732713 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]