BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 27281064)

  • 1. Superior performance with sCMOS over EMCCD in super-resolution optical fluctuation imaging.
    Chen X; Zeng Z; Li R; Xue B; Xi P; Sun Y
    J Biomed Opt; 2016 Jun; 21(6):66007. PubMed ID: 27281064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization-based super-resolution microscopy with an sCMOS camera part II: experimental methodology for comparing sCMOS with EMCCD cameras.
    Long F; Zeng S; Huang ZL
    Opt Express; 2012 Jul; 20(16):17741-59. PubMed ID: 23038326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative performance evaluation of a back-illuminated sCMOS camera with 95% QE for super-resolution localization microscopy.
    Wang Y; Zhao L; Hu Z; Wang Y; Zhao Z; Li L; Huang ZL
    Cytometry A; 2017 Dec; 91(12):1175-1183. PubMed ID: 29165899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a reversibly switchable fluorescent protein for super-resolution optical fluctuation imaging (SOFI).
    Zhang X; Chen X; Zeng Z; Zhang M; Sun Y; Xi P; Peng J; Xu P
    ACS Nano; 2015 Mar; 9(3):2659-67. PubMed ID: 25695314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of sCMOS cameras for detection and localization of single Cy5 molecules.
    Saurabh S; Maji S; Bruchez MP
    Opt Express; 2012 Mar; 20(7):7338-49. PubMed ID: 22453414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization-based super-resolution microscopy with an sCMOS camera.
    Huang ZL; Zhu H; Long F; Ma H; Qin L; Liu Y; Ding J; Zhang Z; Luo Q; Zeng S
    Opt Express; 2011 Sep; 19(20):19156-68. PubMed ID: 21996858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast and accurate sCMOS noise correction for fluorescence microscopy.
    Mandracchia B; Hua X; Guo C; Son J; Urner T; Jia S
    Nat Commun; 2020 Jan; 11(1):94. PubMed ID: 31901080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model-free uncertainty estimation in stochastical optical fluctuation imaging (SOFI) leads to a doubled temporal resolution.
    Vandenberg W; Duwé S; Leutenegger M; Moeyaert B; Krajnik B; Lasser T; Dedecker P
    Biomed Opt Express; 2016 Feb; 7(2):467-80. PubMed ID: 26977356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergizing superresolution optical fluctuation imaging with single molecule localization microscopy.
    Schidorsky S; Yi X; Razvag Y; Sajman J; Hermon K; Weiss S; Sherman E
    Methods Appl Fluoresc; 2018 Sep; 6(4):045008. PubMed ID: 30132439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wide-Field Super-Resolution Optical Fluctuation Imaging through Dynamic Near-Field Speckle Illumination.
    Choi Y; Kim M; Park C; Park J; Park Y; Cho YH
    Nano Lett; 2022 Mar; 22(6):2194-2201. PubMed ID: 35240776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A super-resolution ultrasound imaging method based on active-modulated super-resolution optical fluctuation imaging.
    Pang B; Ta D; Liu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hessian single-molecule localization microscopy using sCMOS camera.
    Xue F; He W; Xu F; Zhang M; Chen L; Xu P
    Biophys Rep; 2018; 4(4):215-221. PubMed ID: 30310858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Super-resolution imaging of subcortical white matter using stochastic optical reconstruction microscopy (STORM) and super-resolution optical fluctuation imaging (SOFI).
    Hainsworth AH; Lee S; Foot P; Patel A; Poon WW; Knight AE
    Neuropathol Appl Neurobiol; 2018 Jun; 44(4):417-426. PubMed ID: 28696566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correcting Artifacts in Single Molecule Localization Microscopy Analysis Arising from Pixel Quantum Efficiency Differences in sCMOS Cameras.
    Babcock HP; Huang F; Speer CM
    Sci Rep; 2019 Dec; 9(1):18058. PubMed ID: 31792238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical precision in super-resolution optical fluctuation imaging.
    Wang X; Chen D; Yu B; Niu H
    Appl Opt; 2016 Oct; 55(28):7911-7916. PubMed ID: 27828025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The performance of 2D array detectors for light sheet based fluorescence correlation spectroscopy.
    Singh AP; Krieger JW; Buchholz J; Charbon E; Langowski J; Wohland T
    Opt Express; 2013 Apr; 21(7):8652-68. PubMed ID: 23571955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-photon light-sheet nanoscopy by fluorescence fluctuation correlation analysis.
    Chen X; Zong W; Li R; Zeng Z; Zhao J; Xi P; Chen L; Sun Y
    Nanoscale; 2016 May; 8(19):9982-7. PubMed ID: 27121341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Narrow-band polymer dots with pronounced fluorescence fluctuations for dual-color super-resolution imaging.
    Liu Z; Liu J; Zhang Z; Sun Z; Shao X; Guo J; Xi L; Yuan Z; Zhang X; Chiu DT; Wu C
    Nanoscale; 2020 Apr; 12(14):7522-7526. PubMed ID: 32215435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of probe diffusion on the SOFI imaging accuracy.
    Vandenberg W; Dedecker P
    Sci Rep; 2017 Mar; 7():44665. PubMed ID: 28333166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Blinking Dyes Unlock High-Order and Multiplane Super-Resolution Optical Fluctuation Imaging.
    Grußmayer K; Lukes T; Lasser T; Radenovic A
    ACS Nano; 2020 Jul; 14(7):9156-9165. PubMed ID: 32567836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.