These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 27281215)

  • 1. Neural correlates of single-vessel haemodynamic responses in vivo.
    O'Herron P; Chhatbar PY; Levy M; Shen Z; Schramm AE; Lu Z; Kara P
    Nature; 2016 Jun; 534(7607):378-82. PubMed ID: 27281215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex.
    Ohki K; Chung S; Ch'ng YH; Kara P; Reid RC
    Nature; 2005 Feb; 433(7026):597-603. PubMed ID: 15660108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex.
    Schummers J; Yu H; Sur M
    Science; 2008 Jun; 320(5883):1638-43. PubMed ID: 18566287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orientation selectivity of synaptic input to neurons in mouse and cat primary visual cortex.
    Tan AY; Brown BD; Scholl B; Mohanty D; Priebe NJ
    J Neurosci; 2011 Aug; 31(34):12339-50. PubMed ID: 21865476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orientation and direction selectivity of synaptic inputs in visual cortical neurons: a diversity of combinations produces spike tuning.
    Monier C; Chavane F; Baudot P; Graham LJ; Frégnac Y
    Neuron; 2003 Feb; 37(4):663-80. PubMed ID: 12597863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulus feature selectivity in excitatory and inhibitory neurons in primary visual cortex.
    Cardin JA; Palmer LA; Contreras D
    J Neurosci; 2007 Sep; 27(39):10333-44. PubMed ID: 17898205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lack of orientation and direction selectivity in a subgroup of fast-spiking inhibitory interneurons: cellular and synaptic mechanisms and comparison with other electrophysiological cell types.
    Nowak LG; Sanchez-Vives MV; McCormick DA
    Cereb Cortex; 2008 May; 18(5):1058-78. PubMed ID: 17720684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional mapping of horizontal connections in developing ferret visual cortex: experiments and modeling.
    Weliky M; Katz LC
    J Neurosci; 1994 Dec; 14(12):7291-305. PubMed ID: 7996176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orientation selectivity and the functional clustering of synaptic inputs in primary visual cortex.
    Wilson DE; Whitney DE; Scholl B; Fitzpatrick D
    Nat Neurosci; 2016 Aug; 19(8):1003-9. PubMed ID: 27294510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulus-selective spiking is driven by the relative timing of synchronous excitation and disinhibition in cat striate neurons in vivo.
    Azouz R; Gray CM
    Eur J Neurosci; 2008 Oct; 28(7):1286-300. PubMed ID: 18973556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity.
    Viswanathan A; Freeman RD
    Nat Neurosci; 2007 Oct; 10(10):1308-12. PubMed ID: 17828254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurometabolic coupling between neural activity, glucose, and lactate in activated visual cortex.
    Li B; Freeman RD
    J Neurochem; 2015 Nov; 135(4):742-54. PubMed ID: 25930947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional organization of envelope-responsive neurons in early visual cortex: organization of carrier tuning properties.
    Li G; Baker CL
    J Neurosci; 2012 May; 32(22):7538-49. PubMed ID: 22649232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemodynamic signals correlate tightly with synchronized gamma oscillations.
    Niessing J; Ebisch B; Schmidt KE; Niessing M; Singer W; Galuske RA
    Science; 2005 Aug; 309(5736):948-51. PubMed ID: 16081740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between contrast adaptation and orientation tuning in V1 and V2 of cat visual cortex.
    Crowder NA; Price NS; Hietanen MA; Dreher B; Clifford CW; Ibbotson MR
    J Neurophysiol; 2006 Jan; 95(1):271-83. PubMed ID: 16192327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sparseness of coding in area 17 of the cat visual cortex: a comparison between pinwheel centres and orientation domains.
    Jayakumar J; Hu D; Vidyasagar TR
    Neuroscience; 2012 Dec; 225():55-64. PubMed ID: 22963796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping stimulus feature selectivity in macaque V1 by two-photon Ca
    Ikezoe K; Amano M; Nishimoto S; Fujita I
    Neuroimage; 2018 Oct; 180(Pt A):312-323. PubMed ID: 29331450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of hemodynamic and neural responses in cat visual cortex using complex stimuli.
    Kayser C; Kim M; Ugurbil K; Kim DS; König P
    Cereb Cortex; 2004 Aug; 14(8):881-91. PubMed ID: 15084493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orientation tuning of surround suppression in lateral geniculate nucleus and primary visual cortex of cat.
    Naito T; Sadakane O; Okamoto M; Sato H
    Neuroscience; 2007 Nov; 149(4):962-75. PubMed ID: 17945429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity-dependent regulation of receptive field properties of cat area 17 by supervised Hebbian learning.
    Frégnac Y; Shulz DE
    J Neurobiol; 1999 Oct; 41(1):69-82. PubMed ID: 10504194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.