These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 27281482)

  • 1. Polyunsaturated fatty acids inhibit Kv1.4 by interacting with positively charged extracellular pore residues.
    Farag NE; Jeong D; Claydon T; Warwicker J; Boyett MR
    Am J Physiol Cell Physiol; 2016 Aug; 311(2):C255-68. PubMed ID: 27281482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. K+ activation of kir3.1/kir3.4 and kv1.4 K+ channels is regulated by extracellular charges.
    Claydon TW; Makary SY; Dibb KM; Boyett MR
    Biophys J; 2004 Oct; 87(4):2407-18. PubMed ID: 15454439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two pore residues mediate acidosis-induced enhancement of C-type inactivation of the Kv1.4 K(+) channel.
    Claydon TW; Boyett MR; Sivaprasadarao A; Orchard CH
    Am J Physiol Cell Physiol; 2002 Oct; 283(4):C1114-21. PubMed ID: 12225975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of the K+ channel kv1.4 by acidosis: protonation of an extracellular histidine slows the recovery from N-type inactivation.
    Claydon TW; Boyett MR; Sivaprasadarao A; Ishii K; Owen JM; O'Beirne HA; Leach R; Komukai K; Orchard CH
    J Physiol; 2000 Jul; 526 Pt 2(Pt 2):253-64. PubMed ID: 10896716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separable effects of human Kvbeta1.2 N- and C-termini on inactivation and expression of human Kv1.4.
    Accili EA; Kuryshev YA; Wible BA; Brown AM
    J Physiol; 1998 Oct; 512 ( Pt 2)(Pt 2):325-36. PubMed ID: 9763623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular basis involved in the blocking effect of antidepressant metergoline on C-type inactivation of Kv1.4 channel.
    Bai HW; Eom S; Yeom HD; Nguyen KVA; Lee J; Sohn SO; Lee JH
    Neuropharmacology; 2019 Mar; 146():65-73. PubMed ID: 30465811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of mammalian Shaker-related K+ channels: evidence for non-conducting closed and non-conducting inactivated states.
    Jäger H; Rauer H; Nguyen AN; Aiyar J; Chandy KG; Grissmer S
    J Physiol; 1998 Jan; 506 ( Pt 2)(Pt 2):291-301. PubMed ID: 9490854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NH2-terminal inactivation peptide binding to C-type-inactivated Kv channels.
    Kurata HT; Wang Z; Fedida D
    J Gen Physiol; 2004 May; 123(5):505-20. PubMed ID: 15078918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Kv4.2 N-terminal restores fast inactivation and confers KChlP2 modulatory effects on N-terminal-deleted Kv1.4 channels.
    Pourrier M; Herrera D; Caballero R; Schram G; Wang Z; Nattel S
    Pflugers Arch; 2004 Dec; 449(3):235-47. PubMed ID: 15452711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model of the interaction between N-type and C-type inactivation in Kv1.4 channels.
    Bett GC; Dinga-Madou I; Zhou Q; Bondarenko VE; Rasmusson RL
    Biophys J; 2011 Jan; 100(1):11-21. PubMed ID: 21190652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constitutive inactivation of the hKv1.5 mutant channel, H463G, in K+-free solutions at physiological pH.
    Zhang S; Eduljee C; Kwan DC; Kehl SJ; Fedida D
    Cell Biochem Biophys; 2005; 43(2):221-30. PubMed ID: 16049347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyunsaturated fatty acids produce a range of activators for heterogeneous IKs channel dysfunction.
    Bohannon BM; Wu X; Wu X; Perez ME; Liin SI; Larsson HP
    J Gen Physiol; 2020 Feb; 152(2):. PubMed ID: 31865382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyunsaturated Fatty acids modify the gating of kv channels.
    Moreno C; Macias A; Prieto A; De La Cruz A; Valenzuela C
    Front Pharmacol; 2012; 3():163. PubMed ID: 22973228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic inhibition of the maximum conductance of Kv1.5 channels by extracellular K+ reduction and acidification.
    Fedida D; Zhang S; Kwan DC; Eduljee C; Kehl SJ
    Cell Biochem Biophys; 2005; 43(2):231-42. PubMed ID: 16049348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipoelectric modification of ion channel voltage gating by polyunsaturated fatty acids.
    Börjesson SI; Hammarström S; Elinder F
    Biophys J; 2008 Sep; 95(5):2242-53. PubMed ID: 18502799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of N- and C-type inactivation of Kv1.4 by pHo and K+: evidence for transmembrane communication.
    Li X; Bett GC; Jiang X; Bondarenko VE; Morales MJ; Rasmusson RL
    Am J Physiol Heart Circ Physiol; 2003 Jan; 284(1):H71-80. PubMed ID: 12388308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of native TREK-1 and Kv1.4 K+ channels by polyunsaturated fatty acids and lysophospholipids.
    Danthi S; Enyeart JA; Enyeart JJ
    J Membr Biol; 2003 Oct; 195(3):147-64. PubMed ID: 14724761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An electrostatic potassium channel opener targeting the final voltage sensor transition.
    Börjesson SI; Elinder F
    J Gen Physiol; 2011 Jun; 137(6):563-77. PubMed ID: 21624947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DPP10 is an inactivation modulatory protein of Kv4.3 and Kv1.4.
    Li HL; Qu YJ; Lu YC; Bondarenko VE; Wang S; Skerrett IM; Morales MJ
    Am J Physiol Cell Physiol; 2006 Nov; 291(5):C966-76. PubMed ID: 16738002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of transient Na+ conductance by intra- and extracellular K+ in the human delayed rectifier K+ channel Kv1.5.
    Wang Z; Zhang X; Fedida D
    J Physiol; 2000 Mar; 523 Pt 3(Pt 3):575-91. PubMed ID: 10718739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.