BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 27281877)

  • 1. [RESEARCH PROGRESS OF ADIPOSE-DERIVED STEM CELLS COMPOUND WITH THREE DIMENSIONAL PRINTING SCAFFOLD FOR ENGINEERED TISSUE].
    Wang Z; Tian X; Bai S
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar; 30(3):320-2. PubMed ID: 27281877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [RESEARCH PROGRESS OF CONSTRUCTING INJECTABLE TISSUE ENGINEERED ADIPOSE TISSUE WITH ADIPOSE-DERIVED STEM CELLS].
    Yang S; Yi Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2015 Feb; 29(2):245-9. PubMed ID: 26455158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new method of fabricating a blend scaffold using an indirect three-dimensional printing technique.
    Jung JW; Lee H; Hong JM; Park JH; Shim JH; Choi TH; Cho DW
    Biofabrication; 2015 Nov; 7(4):045003. PubMed ID: 26525821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells.
    Roskies M; Jordan JO; Fang D; Abdallah MN; Hier MP; Mlynarek A; Tamimi F; Tran SD
    J Biomater Appl; 2016 Jul; 31(1):132-9. PubMed ID: 26980549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiation of adipose-derived stem cells toward nucleus pulposus-like cells induced by hypoxia and a three-dimensional chitosan-alginate gel scaffold in vitro.
    Zhang Z; Li F; Tian H; Guan K; Zhao G; Shan J; Ren D
    Chin Med J (Engl); 2014; 127(2):314-21. PubMed ID: 24438622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bladder muscle regeneration enhanced by sustainable delivery of heparin from bilayer scaffolds carrying stem cells in a rat bladder partial cystectomy model.
    Wang C; Wang H; Guo Q; Ang X; Li B; Han F; Fu Y; Chen W
    Biomed Mater; 2021 Apr; 16(3):. PubMed ID: 33740781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using 3D-bioprinting scaffold loaded with adipose-derived stem cells to burns wound healing.
    Roshangar L; Rad JS; Kheirjou R; Khosroshahi AF
    J Tissue Eng Regen Med; 2021 Jun; 15(6):546-555. PubMed ID: 33779071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-Printing Composite Polycaprolactone-Decellularized Bone Matrix Scaffolds for Bone Tissue Engineering Applications.
    Rindone AN; Nyberg E; Grayson WL
    Methods Mol Biol; 2018; 1577():209-226. PubMed ID: 28493213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [RESEARCH PROGRESS OF THREE-DIMENSIONAL PRINTING POROUS SCAFFOLDS FOR BONE TISSUE ENGINEERING].
    Wu T; Yang C
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Apr; 30(4):509-13. PubMed ID: 27411283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional dynamic fabrication of engineered cartilage based on chitosan/gelatin hybrid hydrogel scaffold in a spinner flask with a special designed steel frame.
    Song K; Li L; Li W; Zhu Y; Jiao Z; Lim M; Fang M; Shi F; Wang L; Liu T
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():384-92. PubMed ID: 26117769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fascia tissue engineering with human adipose-derived stem cells in a murine model: Implications for pelvic floor reconstruction.
    Hung MJ; Wen MC; Huang YT; Chen GD; Chou MM; Yang VC
    J Formos Med Assoc; 2014 Oct; 113(10):704-15. PubMed ID: 23791005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-Dimensional Printing Biologically Inspired DNA-Based Gradient Scaffolds for Cartilage Tissue Regeneration.
    Zhou X; Tenaglio S; Esworthy T; Hann SY; Cui H; Webster TJ; Fenniri H; Zhang LG
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33219-33228. PubMed ID: 32603082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-3D printing of scaffold-free osteogenic and chondrogenic constructs using rat adipose-derived stromal cells.
    Fujimoto R; Murata D; Nakayama K
    Front Biosci (Landmark Ed); 2022 Feb; 27(2):52. PubMed ID: 35226995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D printing of composite tissue with complex shape applied to ear regeneration.
    Lee JS; Hong JM; Jung JW; Shim JH; Oh JH; Cho DW
    Biofabrication; 2014 Jun; 6(2):024103. PubMed ID: 24464765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Innovative Collagen-Based Cell-Printing Method for Obtaining Human Adipose Stem Cell-Laden Structures Consisting of Core-Sheath Structures for Tissue Engineering.
    Yeo M; Lee JS; Chun W; Kim GH
    Biomacromolecules; 2016 Apr; 17(4):1365-75. PubMed ID: 26998966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of adipose-derived stem cell differentiation in scaffolds with IGF-I gene impregnation under dynamic microenvironment.
    Zhu Y; Liu T; Ye H; Song K; Ma X; Cui Z
    Stem Cells Dev; 2010 Oct; 19(10):1547-56. PubMed ID: 20408758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds.
    Temple JP; Hutton DL; Hung BP; Huri PY; Cook CA; Kondragunta R; Jia X; Grayson WL
    J Biomed Mater Res A; 2014 Dec; 102(12):4317-25. PubMed ID: 24510413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Construction of scaffold with human extracellular matrix from adipose tissue].
    Cha PF; Gao JH; Chen Y; Lu F
    Zhonghua Zheng Xing Wai Ke Za Zhi; 2012 Jan; 28(1):55-60. PubMed ID: 22497191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering.
    Hung KC; Tseng CS; Dai LG; Hsu SH
    Biomaterials; 2016 Mar; 83():156-68. PubMed ID: 26774563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UC-VEGF-SMC Three Dimensional (3D) Nano Scaffolds Exhibits Good Repair Function in Bladder Damage.
    Ling Q; Wang T; Yu X; Wang SG; Ye ZQ; Liu JH; Yang SW; Zhu XB; Yu J
    J Biomed Nanotechnol; 2017 Mar; 13(3):313-23. PubMed ID: 29381289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.