BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 27282161)

  • 1. Assessment of edema volume in skin upon injury in a mouse ear model with optical coherence tomography.
    Qin W; Wang RK
    Lasers Med Sci; 2016 Sep; 31(7):1351-61. PubMed ID: 27282161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical coherence tomography provides an optical biopsy of burn wounds in children-a pilot study.
    Lindert J; Tafazzoli-Lari K; Tüshaus L; Larsen B; Bacia A; Bouteleux M; Adler T; Dalicho V; Vasileidos V; Kisch T; Stang F; Welzel J; Wünsch L
    J Biomed Opt; 2018 Oct; 23(10):1-6. PubMed ID: 30324791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Segmentation and quantitative analysis of optical coherence tomography (OCT) images of laser burned skin based on deep learning.
    Wu J; Ma Q; Zhou X; Wei Y; Liu Z; Kang H
    Biomed Phys Eng Express; 2024 May; 10(4):. PubMed ID: 38718764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative assessment of skin swelling using optical coherence tomography.
    Li W; Li P; Fang Y; Lei TC; Dong K; Zou J; Gong W; Xie S; Huang Z
    Photodiagnosis Photodyn Ther; 2019 Jun; 26():413-419. PubMed ID: 31054333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dermal reflectivity determined by optical coherence tomography is an indicator of epidermal hyperplasia and dermal edema within inflamed skin.
    Phillips KG; Wang Y; Levitz D; Choudhury N; Swanzey E; Lagowski J; Kulesz-Martin M; Jacques SL
    J Biomed Opt; 2011 Apr; 16(4):040503. PubMed ID: 21529065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking.
    Gong P; McLaughlin RA; Liew YM; Munro PR; Wood FM; Sampson DD
    J Biomed Opt; 2014 Feb; 19(2):21111. PubMed ID: 24192908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography.
    Kim KH; Pierce MC; Maguluri G; Park BH; Yoon SJ; Lydon M; Sheridan R; de Boer JF
    J Biomed Opt; 2012 Jun; 17(6):066012. PubMed ID: 22734768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical coherence tomography correlates multiple measures of tissue damage following acute burn injury.
    Deegan AJ; Mandell SP; Wang RK
    Quant Imaging Med Surg; 2019 May; 9(5):731-741. PubMed ID: 31281770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of dermal wound repair after collagen implantation with optical coherence tomography.
    Wang Z; Pan H; Yuan Z; Liu J; Chen W; Pan Y
    Tissue Eng Part C Methods; 2008 Mar; 14(1):35-45. PubMed ID: 18454644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of microcirculation dynamics during cutaneous wound healing phases in vivo using optical microangiography.
    Yousefi S; Qin J; Dziennis S; Wang RK
    J Biomed Opt; 2014; 19(7):76015. PubMed ID: 25036212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of OCT-Derived Attenuation Coefficient in Acute Burn-Damaged Skin.
    Lu J; Deegan AJ; Cheng Y; Liu T; Zheng Y; Mandell SP; Wang RK
    Lasers Surg Med; 2021 Nov; 53(9):1192-1200. PubMed ID: 33998012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lymphatic response to depilation-induced inflammation in mouse ear assessed with label-free optical lymphangiography.
    Qin W; Baran U; Wang R
    Lasers Surg Med; 2015 Oct; 47(8):669-76. PubMed ID: 26224650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Diagnosis of the deep partial-thickness burn wound of Skh-1 mouse with Optical Coherence Tomography].
    Liu SH; Xie WG; Kremer M; Machens HG; Lankenau EM; Huettmann G
    Zhonghua Shao Shang Za Zhi; 2010 Aug; 26(4):272-5. PubMed ID: 21029684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-invasive assessment of healing of bacteria infected and uninfected wounds using optical coherence tomography.
    Sahu K; Verma Y; Sharma M; Rao KD; Gupta PK
    Skin Res Technol; 2010 Nov; 16(4):428-37. PubMed ID: 21039908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of optical coherence tomography as a non-invasive diagnostic tool in cutaneous wound healing.
    Kuck M; Strese H; Alawi SA; Meinke MC; Fluhr JW; Burbach GJ; Krah M; Sterry W; Lademann J
    Skin Res Technol; 2014 Feb; 20(1):1-7. PubMed ID: 23782399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of burn injury using Raman spectroscopy and optical coherence tomography: An ex-vivo study on porcine skin.
    Rangaraju LP; Kunapuli G; Every D; Ayala OD; Ganapathy P; Mahadevan-Jansen A
    Burns; 2019 May; 45(3):659-670. PubMed ID: 30385061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model.
    Yeh AT; Kao B; Jung WG; Chen Z; Nelson JS; Tromberg BJ
    J Biomed Opt; 2004; 9(2):248-53. PubMed ID: 15065887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an efficient algorithm for the detection of macular edema from optical coherence tomography images.
    Jemshi KM; Gopi VP; Issac Niwas S
    Int J Comput Assist Radiol Surg; 2018 Sep; 13(9):1369-1377. PubMed ID: 29845454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical coherence tomography based microangiography provides an ability to longitudinally image arteriogenesis in vivo.
    Li Y; Choi WJ; Qin W; Baran U; Habenicht LM; Wang RK
    J Neurosci Methods; 2016 Dec; 274():164-171. PubMed ID: 27751893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical coherence tomography angiography for longitudinal monitoring of vascular changes in human cutaneous burns.
    Gong P; Es'haghian S; Wood FM; Sampson DD; McLaughlin RA
    Exp Dermatol; 2016 Sep; 25(9):722-4. PubMed ID: 27116945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.