These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 27282336)
1. Poly-l-Lactic Acid Nanofiber-Polyamidoamine Hydrogel Composites: Preparation, Properties, and Preliminary Evaluation as Scaffolds for Human Pluripotent Stem Cell Culturing. Gualandi C; Bloise N; Mauro N; Ferruti P; Manfredi A; Sampaolesi M; Liguori A; Laurita R; Gherardi M; Colombo V; Visai L; Focarete ML; Ranucci E Macromol Biosci; 2016 Oct; 16(10):1533-1544. PubMed ID: 27282336 [TBL] [Abstract][Full Text] [Related]
2. RGD-mimic polyamidoamine-montmorillonite composites with tunable stiffness as scaffolds for bone tissue-engineering applications. Mauro N; Chiellini F; Bartoli C; Gazzarri M; Laus M; Antonioli D; Griffiths P; Manfredi A; Ranucci E; Ferruti P J Tissue Eng Regen Med; 2017 Jul; 11(7):2164-2175. PubMed ID: 26948844 [TBL] [Abstract][Full Text] [Related]
3. Bicomponent electrospinning to fabricate three-dimensional hydrogel-hybrid nanofibrous scaffolds with spatial fiber tortuosity. Jin G; Lee S; Kim SH; Kim M; Jang JH Biomed Microdevices; 2014 Dec; 16(6):793-804. PubMed ID: 24972552 [TBL] [Abstract][Full Text] [Related]
4. Toughening Polyamidoamine Hydrogels through Covalent Grafting of Short Silk Fibers. Maggi F; Manfredi A; Carosio F; Maddalena L; Alongi J; Ferruti P; Ranucci E Molecules; 2022 Nov; 27(22):. PubMed ID: 36431909 [TBL] [Abstract][Full Text] [Related]
5. Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications. Kai D; Prabhakaran MP; Stahl B; Eblenkamp M; Wintermantel E; Ramakrishna S Nanotechnology; 2012 Mar; 23(9):095705. PubMed ID: 22322583 [TBL] [Abstract][Full Text] [Related]
6. Preparation of poly(L-lactic acid) nanofiber scaffolds with a rough surface by phase inversion using supercritical carbon dioxide. Yang DZ; Chen AZ; Wang SB; Li Y; Tang XL; Wu YJ Biomed Mater; 2015 Jun; 10(3):035015. PubMed ID: 26107415 [TBL] [Abstract][Full Text] [Related]
7. Stem cell differentiation on electrospun nanofibrous substrates for vascular tissue engineering. Jia L; Prabhakaran MP; Qin X; Ramakrishna S Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4640-50. PubMed ID: 24094171 [TBL] [Abstract][Full Text] [Related]
8. The effect of poly (L-lactic acid) nanofiber orientation on osteogenic responses of human osteoblast-like MG63 cells. Wang B; Cai Q; Zhang S; Yang X; Deng X J Mech Behav Biomed Mater; 2011 May; 4(4):600-9. PubMed ID: 21396609 [TBL] [Abstract][Full Text] [Related]
10. Paraffin embedding allows effective analysis of proliferation, survival, and immunophenotyping of cells cultured on poly(l-lactic acid) electrospun nanofiber scaffolds. Foroni L; Dirani G; Gualandi C; Focarete ML; Pasquinelli G Tissue Eng Part C Methods; 2010 Aug; 16(4):751-60. PubMed ID: 19824801 [TBL] [Abstract][Full Text] [Related]
11. Scaffolding for challenging environments: materials selection for tissue engineered intestine. Boomer L; Liu Y; Mahler N; Johnson J; Zak K; Nelson T; Lannutti J; Besner GE J Biomed Mater Res A; 2014 Nov; 102(11):3795-802. PubMed ID: 24288210 [TBL] [Abstract][Full Text] [Related]
12. Electrospun poly(L-lactic acid) nanofibres loaded with dexamethasone to induce osteogenic differentiation of human mesenchymal stem cells. Nguyen LT; Liao S; Chan CK; Ramakrishna S J Biomater Sci Polym Ed; 2012; 23(14):1771-91. PubMed ID: 21943592 [TBL] [Abstract][Full Text] [Related]
13. Electrospun poly(l-lactide)/zein nanofiber mats loaded with Rana chensinensis skin peptides for wound dressing. Zhang M; Li X; Li S; Liu Y; Hao L J Mater Sci Mater Med; 2016 Sep; 27(9):136. PubMed ID: 27432415 [TBL] [Abstract][Full Text] [Related]
15. Composite poly(l-lactic-acid)/silk fibroin scaffold prepared by electrospinning promotes chondrogenesis for cartilage tissue engineering. Li Z; Liu P; Yang T; Sun Y; You Q; Li J; Wang Z; Han B J Biomater Appl; 2016 May; 30(10):1552-65. PubMed ID: 27059497 [TBL] [Abstract][Full Text] [Related]
16. Incorporation of growth factor loaded microspheres into polymeric electrospun nanofibers for tissue engineering applications. Gungor-Ozkerim PS; Balkan T; Kose GT; Sarac AS; Kok FN J Biomed Mater Res A; 2014 Jun; 102(6):1897-908. PubMed ID: 23852885 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of novel high performance ductile poly(lactic acid) nanofiber scaffold coated with poly(vinyl alcohol) for tissue engineering applications. Abdal-Hay A; Hussein KH; Casettari L; Khalil KA; Hamdy AS Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():143-150. PubMed ID: 26706517 [TBL] [Abstract][Full Text] [Related]
18. Electrospun nanofibrous scaffolds of segmented polyurethanes based on PEG, PLLA and PTMC blocks: Physico-chemical properties and morphology. Trinca RB; Abraham GA; Felisberti MI Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():511-7. PubMed ID: 26249621 [TBL] [Abstract][Full Text] [Related]
19. Nanohydroxyapatite-coated electrospun poly(l-lactide) nanofibers enhance osteogenic differentiation of stem cells and induce ectopic bone formation. Seyedjafari E; Soleimani M; Ghaemi N; Shabani I Biomacromolecules; 2010 Nov; 11(11):3118-25. PubMed ID: 20925348 [TBL] [Abstract][Full Text] [Related]
20. Fabrication and biocompatibility of poly(l-lactic acid) and chitosan composite scaffolds with hierarchical microstructures. Lou T; Wang X; Yan X; Miao Y; Long YZ; Yin HL; Sun B; Song G Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():341-345. PubMed ID: 27127062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]