These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 27282336)

  • 21. FEM modeling of the reinforcement mechanism of Hydroxyapatite in PLLA scaffolds produced by supercritical drying, for Tissue Engineering applications.
    Baldino L; Naddeo F; Cardea S; Naddeo A; Reverchon E
    J Mech Behav Biomed Mater; 2015 Nov; 51():225-36. PubMed ID: 26275485
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The surface grafting of graphene oxide with poly(ethylene glycol) as a reinforcement for poly(lactic acid) nanocomposite scaffolds for potential tissue engineering applications.
    Zhang C; Wang L; Zhai T; Wang X; Dan Y; Turng LS
    J Mech Behav Biomed Mater; 2016 Jan; 53():403-413. PubMed ID: 26409231
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved exposure of bioactive peptides to the outermost surface of the polylactic acid nanofiber scaffold.
    Hsu YI; Yamaoka T
    J Biomed Mater Res B Appl Biomater; 2020 May; 108(4):1274-1280. PubMed ID: 31429188
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heparinized PLLA/PLCL nanofibrous scaffold for potential engineering of small-diameter blood vessel: tunable elasticity and anticoagulation property.
    Wang W; Hu J; He C; Nie W; Feng W; Qiu K; Zhou X; Gao Y; Wang G
    J Biomed Mater Res A; 2015 May; 103(5):1784-97. PubMed ID: 25196988
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tuning multi/pluri-potent stem cell fate by electrospun poly(L-lactic acid)-calcium-deficient hydroxyapatite nanocomposite mats.
    D'Angelo F; Armentano I; Cacciotti I; Tiribuzi R; Quattrocelli M; Del Gaudio C; Fortunati E; Saino E; Caraffa A; Cerulli GG; Visai L; Kenny JM; Sampaolesi M; Bianco A; Martino S; Orlacchio A
    Biomacromolecules; 2012 May; 13(5):1350-60. PubMed ID: 22449037
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrogels as feeder-free scaffolds for long-term self-renewal of mouse induced pluripotent stem cells.
    Yang JJ; Liu JF; Kurokawa T; Kitada K; Gong JP
    J Tissue Eng Regen Med; 2015 Apr; 9(4):375-88. PubMed ID: 23166055
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Composite poly-L-lactic acid/poly-(α,β)-DL-aspartic acid/collagen nanofibrous scaffolds for dermal tissue regeneration.
    Ravichandran R; Venugopal JR; Sundarrajan S; Mukherjee S; Sridhar R; Ramakrishna S
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1443-51. PubMed ID: 24364944
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Collagen-nanofiber hydrogel composites promote contact guidance of human lymphatic microvascular endothelial cells and directed capillary tube formation.
    Laco F; Grant MH; Black RA
    J Biomed Mater Res A; 2013 Jun; 101(6):1787-99. PubMed ID: 23197422
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis, physicochemical properties, and preliminary biological characterizations of a novel amphoteric agmatine-based poly(amidoamine) with RGD-like repeating units.
    Franchini J; Ranucci E; Ferruti P; Rossi M; Cavalli R
    Biomacromolecules; 2006 Apr; 7(4):1215-22. PubMed ID: 16602741
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrospun chitosan-graft-poly (ε -caprolactone)/poly (ε-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering.
    Chen H; Huang J; Yu J; Liu S; Gu P
    Int J Biol Macromol; 2011 Jan; 48(1):13-9. PubMed ID: 20933540
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of RGD-immobilized dual-pore poly(L-lactic acid) scaffolds on chondrocyte proliferation and extracellular matrix production.
    Jung HJ; Park K; Kim JJ; Lee JH; Han KO; Han DK
    Artif Organs; 2008 Dec; 32(12):981-9. PubMed ID: 19133029
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of plasma treatment to nanofibers on initial cell adhesion and cell morphology.
    Liu W; Zhan J; Su Y; Wu T; Wu C; Ramakrishna S; Mo X; Al-Deyab SS; El-Newehy M
    Colloids Surf B Biointerfaces; 2014 Jan; 113():101-6. PubMed ID: 24060934
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication and characterization of Mg/P(LLA-CL)-blended nanofiber scaffold.
    Li H; Wu T; Zheng Y; El-Hamshary H; Al-Deyab SS; Mo X
    J Biomater Sci Polym Ed; 2014 Jul; 25(10):1013-27. PubMed ID: 24894635
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biologically improved nanofibrous scaffolds for cardiac tissue engineering.
    Bhaarathy V; Venugopal J; Gandhimathi C; Ponpandian N; Mangalaraj D; Ramakrishna S
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():268-77. PubMed ID: 25280706
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure, morphology and cell affinity of poly(L-lactide) films surface-functionalized with chitosan nanofibers via a solid-liquid phase separation technique.
    Zhao J; Han W; Tang M; Tu M; Zeng R; Liang Z; Zhou C
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1546-53. PubMed ID: 23827607
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrospun nanofibrous scaffolds of poly (L-lactic acid)-dicalcium silicate composite via ultrasonic-aging technique for bone regeneration.
    Dong S; Sun J; Li Y; Li J; Cui W; Li B
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():426-33. PubMed ID: 24411397
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrospun Methacrylated Gelatin/Poly(L-Lactic Acid) Nanofibrous Hydrogel Scaffolds for Potential Wound Dressing Application.
    Sun M; Chen S; Ling P; Ma J; Wu S
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35009955
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Poly(l-lactic acid) and polyurethane nanofibers fabricated by solution blow spinning as potential substrates for cardiac cell culture.
    Tomecka E; Wojasinski M; Jastrzebska E; Chudy M; Ciach T; Brzozka Z
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():305-316. PubMed ID: 28415467
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biosilica-loaded poly(ϵ-caprolactone) nanofibers mats provide a morphogenetically active surface scaffold for the growth and mineralization of the osteoclast-related SaOS-2 cells.
    Müller WE; Tolba E; Schröder HC; Diehl-Seifert B; Link T; Wang X
    Biotechnol J; 2014 Oct; 9(10):1312-21. PubMed ID: 24995956
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlled drug release from biodegradable thermoresponsive physical hydrogel nanofibers.
    Loh XJ; Peh P; Liao S; Sng C; Li J
    J Control Release; 2010 Apr; 143(2):175-82. PubMed ID: 20064568
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.