These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 27282356)

  • 1. Prediction of residue-residue contact matrix for protein-protein interaction with Fisher score features and deep learning.
    Du T; Liao L; Wu CH; Sun B
    Methods; 2016 Nov; 110():97-105. PubMed ID: 27282356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting protein residue-residue contacts using random forests and deep networks.
    Luttrell J; Liu T; Zhang C; Wang Z
    BMC Bioinformatics; 2019 Mar; 20(Suppl 2):100. PubMed ID: 30871477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of contact matrix for protein-protein interaction.
    González AJ; Liao L; Wu CH
    Bioinformatics; 2013 Apr; 29(8):1018-25. PubMed ID: 23418186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein contact prediction by integrating deep multiple sequence alignments, coevolution and machine learning.
    Adhikari B; Hou J; Cheng J
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):84-96. PubMed ID: 29047157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amalgamation of 3D structure and sequence information for protein-protein interaction prediction.
    Jha K; Saha S
    Sci Rep; 2020 Nov; 10(1):19171. PubMed ID: 33154416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of Protein-Protein Interaction via co-occurring Aligned Pattern Clusters.
    Sze-To A; Fung S; Lee EA; Wong AKC
    Methods; 2016 Nov; 110():26-34. PubMed ID: 27476008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global Vectors Representation of Protein Sequences and Its Application for Predicting Self-Interacting Proteins with Multi-Grained Cascade Forest Model.
    Chen ZH; You ZH; Zhang WB; Wang YB; Cheng L; Alghazzawi D
    Genes (Basel); 2019 Nov; 10(11):. PubMed ID: 31726752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine-learning techniques for the prediction of protein-protein interactions.
    Sarkar D; Saha S
    J Biosci; 2019 Sep; 44(4):. PubMed ID: 31502581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Web-Based Protocol for Interprotein Contact Prediction by Deep Learning.
    Jing X; Zeng H; Wang S; Xu J
    Methods Mol Biol; 2020; 2074():67-80. PubMed ID: 31583631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of Machine Learning Approaches for Protein-protein Interactions Prediction.
    Zhang M; Su Q; Lu Y; Zhao M; Niu B
    Med Chem; 2017; 13(6):506-514. PubMed ID: 28530547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Weighted Extreme Learning Machine Combined With Scale-Invariant Feature Transform to Predict Protein-Protein Interactions From Protein Evolutionary Information.
    Li J; Shi X; You ZH; Yi HC; Chen Z; Lin Q; Fang M
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1546-1554. PubMed ID: 31940546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ens-PPI: A Novel Ensemble Classifier for Predicting the Interactions of Proteins Using Autocovariance Transformation from PSSM.
    Gao ZG; Wang L; Xia SX; You ZH; Yan X; Zhou Y
    Biomed Res Int; 2016; 2016():4563524. PubMed ID: 27437399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning methods for protein torsion angle prediction.
    Li H; Hou J; Adhikari B; Lyu Q; Cheng J
    BMC Bioinformatics; 2017 Sep; 18(1):417. PubMed ID: 28923002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boosting compound-protein interaction prediction by deep learning.
    Tian K; Shao M; Wang Y; Guan J; Zhou S
    Methods; 2016 Nov; 110():64-72. PubMed ID: 27378654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting protein-protein interactions from protein sequences by a stacked sparse autoencoder deep neural network.
    Wang YB; You ZH; Li X; Jiang TH; Chen X; Zhou X; Wang L
    Mol Biosyst; 2017 Jun; 13(7):1336-1344. PubMed ID: 28604872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of deep learning methods for blind protein contact prediction in CASP12.
    Wang S; Sun S; Xu J
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):67-77. PubMed ID: 28845538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Deep Learning Framework for Identifying Essential Proteins by Integrating Multiple Types of Biological Information.
    Zeng M; Li M; Fei Z; Wu FX; Li Y; Pan Y; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(1):296-305. PubMed ID: 30736002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting domain-domain interaction based on domain profiles with feature selection and support vector machines.
    González AJ; Liao L
    BMC Bioinformatics; 2010 Oct; 11():537. PubMed ID: 21034480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of protein self-interactions using stacked long short-term memory from protein sequences information.
    Wang YB; You ZH; Li X; Jiang TH; Cheng L; Chen ZH
    BMC Syst Biol; 2018 Dec; 12(Suppl 8):129. PubMed ID: 30577794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.