These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 27282773)

  • 1. Atom-economic catalytic amide synthesis from amines and carboxylic acids activated in situ with acetylenes.
    Krause T; Baader S; Erb B; Gooßen LJ
    Nat Commun; 2016 Jun; 7():11732. PubMed ID: 27282773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic amide formation from non-activated carboxylic acids and amines.
    Lundberg H; Tinnis F; Selander N; Adolfsson H
    Chem Soc Rev; 2014 Apr; 43(8):2714-42. PubMed ID: 24430887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-pot mechanosynthesis of aromatic amides and dipeptides from carboxylic acids and amines.
    Štrukil V; Bartolec B; Portada T; Đilović I; Halasz I; Margetić D
    Chem Commun (Camb); 2012 Dec; 48(99):12100-2. PubMed ID: 23135220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave-Assisted Catalytic Method for a Green Synthesis of Amides Directly from Amines and Carboxylic Acids.
    Zarecki AP; Kolanowski JL; Markiewicz WT
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32290373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ Generated Ruthenium Catalyst Systems Bearing Diverse N-Heterocyclic Carbene Precursors for Atom-Economic Amide Synthesis from Alcohols and Amines.
    Cheng H; Xiong MQ; Cheng CX; Wang HJ; Lu Q; Liu HF; Yao FB; Chen C; Verpoort F
    Chem Asian J; 2018 Feb; 13(4):440-448. PubMed ID: 29316301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amidation reactions from the direct coupling of metal carboxylate salts with amines.
    Goodreid JD; Duspara PA; Bosch C; Batey RA
    J Org Chem; 2014 Feb; 79(3):943-54. PubMed ID: 24354665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regioselective enzyme-catalyzed synthesis of sophorolipid esters, amides, and multifunctional monomers.
    Singh SK; Felse AP; Nunez A; Foglia TA; Gross RA
    J Org Chem; 2003 Jul; 68(14):5466-77. PubMed ID: 12839437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Amidation of Carboxylic Acids with Nitroarenes.
    Wang SP; Cheung CW; Ma JA
    J Org Chem; 2019 Nov; 84(21):13922-13934. PubMed ID: 31591886
    [No Abstract]   [Full Text] [Related]  

  • 9. Amide synthesis from alcohols and amines by the extrusion of dihydrogen.
    Nordstrøm LU; Vogt H; Madsen R
    J Am Chem Soc; 2008 Dec; 130(52):17672-3. PubMed ID: 19061316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harnessing and engineering amide bond forming ligases for the synthesis of amides.
    Winn M; Richardson SM; Campopiano DJ; Micklefield J
    Curr Opin Chem Biol; 2020 Apr; 55():77-85. PubMed ID: 32058241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfur-Fluoride Exchange (SuFEx)-Mediated Synthesis of Sterically Hindered and Electron-Deficient Secondary and Tertiary Amides via Acyl Fluoride Intermediates.
    Smedley CJ; Barrow AS; Spiteri C; Giel MC; Sharma P; Moses JE
    Chemistry; 2017 Jul; 23(42):9990-9995. PubMed ID: 28612408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-Free Synthesis of N-Aryl Amides using Organocatalytic Ring-Opening Aminolysis of Lactones.
    Guo W; Gómez JE; Martínez-Rodríguez L; Bandeira NAG; Bo C; Kleij AW
    ChemSusChem; 2017 May; 10(9):1969-1975. PubMed ID: 28378941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Titanium-catalyzed multicomponent couplings: efficient one-pot syntheses of nitrogen heterocycles.
    Odom AL; McDaniel TJ
    Acc Chem Res; 2015 Nov; 48(11):2822-33. PubMed ID: 26295382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amide Synthesis from Thiocarboxylic Acids and Amines by Spontaneous Reaction and Electrosynthesis.
    Tang L; Matuska JH; Huang YH; He YH; Guan Z
    ChemSusChem; 2019 Jun; 12(12):2570-2575. PubMed ID: 30994975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(methylhydrosiloxane) as a green reducing agent in organophosphorus-catalysed amide bond formation.
    Hamstra DFJ; Lenstra DC; Koenders TJ; Rutjes FPJT; Mecinović J
    Org Biomol Chem; 2017 Aug; 15(30):6426-6432. PubMed ID: 28737181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carboxylate-assisted ruthenium-catalyzed alkyne annulations by C-H/Het-H bond functionalizations.
    Ackermann L
    Acc Chem Res; 2014 Feb; 47(2):281-95. PubMed ID: 23379589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amide formation in one pot from carboxylic acids and amines via carboxyl and sulfinyl mixed anhydrides.
    Zambroń BK; Dubbaka SR; Marković D; Moreno-Clavijo E; Vogel P
    Org Lett; 2013 May; 15(10):2550-3. PubMed ID: 23642170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic chemical amide synthesis at room temperature: one more step toward peptide synthesis.
    Mohy El Dine T; Erb W; Berhault Y; Rouden J; Blanchet J
    J Org Chem; 2015 May; 80(9):4532-44. PubMed ID: 25849872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-Component Redox Organocatalyst for Peptide Bond Formation.
    Handoko ; Panigrahi NR; Arora PS
    J Am Chem Soc; 2022 Mar; 144(8):3637-3643. PubMed ID: 35188383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. General Dialdehyde Click Chemistry for Amine Bioconjugation.
    Elahipanah S; O'Brien PJ; Rogozhnikov D; Yousaf MN
    Bioconjug Chem; 2017 May; 28(5):1422-1433. PubMed ID: 28436674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.