BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 27282953)

  • 1. Internal guide RNA interactions interfere with Cas9-mediated cleavage.
    Thyme SB; Akhmetova L; Montague TG; Valen E; Schier AF
    Nat Commun; 2016 Jun; 7():11750. PubMed ID: 27282953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural roles of guide RNAs in the nuclease activity of Cas9 endonuclease.
    Lim Y; Bak SY; Sung K; Jeong E; Lee SH; Kim JS; Bae S; Kim SK
    Nat Commun; 2016 Nov; 7():13350. PubMed ID: 27804953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved gRNA secondary structures allow editing of target sites resistant to CRISPR-Cas9 cleavage.
    Riesenberg S; Helmbrecht N; Kanis P; Maricic T; Pääbo S
    Nat Commun; 2022 Jan; 13(1):489. PubMed ID: 35078986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 genome-editing systems.
    Zhu LJ; Holmes BR; Aronin N; Brodsky MH
    PLoS One; 2014; 9(9):e108424. PubMed ID: 25247697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Efficient and Rapid Detection of the Cleavage Activity of Cas9/gRNA via a Fluorescent Reporter.
    Yang Y; Liu S; Cheng Y; Nie L; Lv C; Wang G; Zhang Y; Hao L
    Appl Biochem Biotechnol; 2016 Oct; 180(4):655-667. PubMed ID: 27209600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic Circular Dichroism of the Cas9 Protein and gRNA:Cas9 Ribonucleoprotein Complex.
    Halat M; Klimek-Chodacka M; Orleanska J; Baranska M; Baranski R
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33805827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ribozyme Mediated gRNA Generation for In Vitro and In Vivo CRISPR/Cas9 Mutagenesis.
    Lee RT; Ng AS; Ingham PW
    PLoS One; 2016; 11(11):e0166020. PubMed ID: 27832146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Planta Processing of the SpCas9-gRNA Complex.
    Mikami M; Toki S; Endo M
    Plant Cell Physiol; 2017 Nov; 58(11):1857-1867. PubMed ID: 29040704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of the affinities of CRISPR-Cas9 nucleases for cognate protospacer adjacent motif (PAM) sequences.
    Mekler V; Kuznedelov K; Severinov K
    J Biol Chem; 2020 May; 295(19):6509-6517. PubMed ID: 32241913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9 gRNA activity depends on free energy changes and on the target PAM context.
    Corsi GI; Qu K; Alkan F; Pan X; Luo Y; Gorodkin J
    Nat Commun; 2022 May; 13(1):3006. PubMed ID: 35637227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted genome editing in human cells using CRISPR/Cas nucleases and truncated guide RNAs.
    Fu Y; Reyon D; Joung JK
    Methods Enzymol; 2014; 546():21-45. PubMed ID: 25398334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Cleavage-Responsive Stem-Loop Hairpin for Assaying Guide RNA Activity.
    deBoer TR; Wauford N; Chung JY; Torres Perez MS; Murthy N
    ACS Chem Biol; 2018 Feb; 13(2):461-466. PubMed ID: 29381046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct patterns of Cas9 mismatch tolerance in vitro and in vivo.
    Fu BX; St Onge RP; Fire AZ; Smith JD
    Nucleic Acids Res; 2016 Jun; 44(11):5365-77. PubMed ID: 27198218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs.
    Fu Y; Sander JD; Reyon D; Cascio VM; Joung JK
    Nat Biotechnol; 2014 Mar; 32(3):279-284. PubMed ID: 24463574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipofection-mediated genome editing using DNA-free delivery of the Cas9/gRNA ribonucleoprotein into plant cells.
    Liu W; Rudis MR; Cheplick MH; Millwood RJ; Yang JP; Ondzighi-Assoume CA; Montgomery GA; Burris KP; Mazarei M; Chesnut JD; Stewart CN
    Plant Cell Rep; 2020 Feb; 39(2):245-257. PubMed ID: 31728703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmable RNA recognition and cleavage by CRISPR/Cas9.
    O'Connell MR; Oakes BL; Sternberg SH; East-Seletsky A; Kaplan M; Doudna JA
    Nature; 2014 Dec; 516(7530):263-6. PubMed ID: 25274302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice.
    Mikami M; Toki S; Endo M
    Plant Mol Biol; 2015 Aug; 88(6):561-72. PubMed ID: 26188471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a.
    Swarts DC; van der Oost J; Jinek M
    Mol Cell; 2017 Apr; 66(2):221-233.e4. PubMed ID: 28431230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-step genome editing of porcine zygotes through the electroporation of a CRISPR/Cas9 system with two guide RNAs.
    Hirata M; Wittayarat M; Tanihara F; Sato Y; Namula Z; Le QA; Lin Q; Takebayashi K; Otoi T
    In Vitro Cell Dev Biol Anim; 2020 Sep; 56(8):614-621. PubMed ID: 32978715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for self-cleavage prevention by tag:anti-tag pairing complementarity in type VI Cas13 CRISPR systems.
    Wang B; Zhang T; Yin J; Yu Y; Xu W; Ding J; Patel DJ; Yang H
    Mol Cell; 2021 Mar; 81(5):1100-1115.e5. PubMed ID: 33472057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.