BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 27283494)

  • 1. Evidence for Surface Recognition by a Cholesterol-Recognition Peptide.
    Mukai M; Glover KJ; Regen SL
    Biophys J; 2016 Jun; 110(12):2577-2580. PubMed ID: 27283494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide Recognition of Cholesterol in Fluid Phospholipid Bilayers.
    Mukai M; Krause MR; Regen SL
    J Am Chem Soc; 2015 Oct; 137(39):12518-20. PubMed ID: 26394115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exchangeable Mimics of DPPC and DPPG Exhibiting Similar Nearest-Neighbor Interactions in Fluid Bilayers.
    Mukai M; Regen SL
    Langmuir; 2015 Nov; 31(46):12674-8. PubMed ID: 26536166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of caveolin-1 scaffolding and intramembrane regions containing a CRAC motif with cholesterol in lipid bilayers.
    Yang G; Xu H; Li Z; Li F
    Biochim Biophys Acta; 2014 Oct; 1838(10):2588-99. PubMed ID: 24998359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholesterol enhances surface water diffusion of phospholipid bilayers.
    Cheng CY; Olijve LL; Kausik R; Han S
    J Chem Phys; 2014 Dec; 141(22):22D513. PubMed ID: 25494784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Net Interactions That Push Cholesterol Away from Unsaturated Phospholipids Are Driven by Enthalpy.
    Wang C; Almeida PF; Regen SL
    Biochemistry; 2018 Nov; 57(47):6637-6643. PubMed ID: 30370762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholesterol-phospholipid association in fluid bilayers: a thermodynamic analysis from nearest-neighbor recognition measurements.
    Zhang J; Cao H; Jing B; Almeida PF; Regen SL
    Biophys J; 2006 Aug; 91(4):1402-6. PubMed ID: 16751233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylglycerol bilayer membranes.
    McMullen TP; Lewis RN; McElhaney RN
    Biochim Biophys Acta; 2009 Feb; 1788(2):345-57. PubMed ID: 19083990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholesterol-phospholipid complexation in fluid bilayers as evidenced by nearest-neighbor recognition measurements.
    Zhang J; Cao H; Regen SL
    Langmuir; 2007 Jan; 23(2):405-7. PubMed ID: 17209587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structural role of cholesterol in cell membranes: from condensed bilayers to lipid rafts.
    Krause MR; Regen SL
    Acc Chem Res; 2014 Dec; 47(12):3512-21. PubMed ID: 25310179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phospholipid complexation of general anesthetics in fluid bilayers.
    Turkyilmaz S; Mitomo H; Chen WH; Regen SL
    Langmuir; 2010 Apr; 26(8):5309-11. PubMed ID: 20297778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptide-induced formation of cholesterol-rich domains.
    Epand RM; Sayer BG; Epand RF
    Biochemistry; 2003 Dec; 42(49):14677-89. PubMed ID: 14661981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-resolved fluorescence and fourier transform infrared spectroscopic investigations of lateral packing defects and superlattice domains in compositionally uniform cholesterol/phosphatidylcholine bilayers.
    Cannon B; Heath G; Huang J; Somerharju P; Virtanen JA; Cheng KH
    Biophys J; 2003 Jun; 84(6):3777-91. PubMed ID: 12770884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of fusidic acid with lipid membranes: Implications to the mechanism of antibiotic activity.
    Falck E; Hautala JT; Karttunen M; Kinnunen PK; Patra M; Saaren-Seppälä H; Vattulainen I; Wiedmer SK; Holopainen JM
    Biophys J; 2006 Sep; 91(5):1787-99. PubMed ID: 16782792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A thermodynamic signature of lipid segregation in biomembranes induced by a short peptide derived from glycoprotein gp36 of feline immunodeficiency virus.
    Oliva R; Del Vecchio P; Stellato MI; D'Ursi AM; D'Errico G; Paduano L; Petraccone L
    Biochim Biophys Acta; 2015 Feb; 1848(2):510-7. PubMed ID: 25450811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of cholesterol on bilayer location of the class A peptide Ac-18A-NH2 as revealed by fluorescence resonance energy transfer.
    Gorbenko G; Handa T; Saito H; Molotkovsky J; Tanaka M; Egashira M; Nakano M
    Eur Biophys J; 2003 Dec; 32(8):703-9. PubMed ID: 12856165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylglycerol bilayers.
    Liu F; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2004 Mar; 43(12):3679-87. PubMed ID: 15035638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and synthesis of sphingomyelin-cholesterol conjugates and their formation of ordered membranes.
    Matsumori N; Tanada N; Nozu K; Okazaki H; Oishi T; Murata M
    Chemistry; 2011 Jul; 17(31):8568-75. PubMed ID: 21728198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and properties of phospholipid-peptide monolayers containing monomeric SP-B(1-25) I. Phases and morphology by epifluorescence microscopy.
    Biswas N; Shanmukh S; Waring AJ; Walther F; Wang Z; Chang Y; Notter RH; Dluhy RA
    Biophys Chem; 2005 Mar; 113(3):223-32. PubMed ID: 15620507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonpolar interactions between trans-membrane helical EGF peptide and phosphatidylcholines, sphingomyelins and cholesterol. Molecular dynamics simulation studies.
    Róg T; Murzyn K; Karttunen M; Pasenkiewicz-Gierula M
    J Pept Sci; 2008 Apr; 14(4):374-82. PubMed ID: 17985365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.