These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 27283510)

  • 41. Ultrathin Porated Elastic Hydrogels As a Biomimetic Basement Membrane for Dual Cell Culture.
    Pellowe AS; Lauridsen HM; Matta R; Gonzalez AL
    J Vis Exp; 2017 Dec; (130):. PubMed ID: 29364202
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Standardized, defined serum-free culture of a human skin equivalent on fibroblast-populated collagen scaffold.
    Ng W; Ikeda S
    Acta Derm Venereol; 2011 Jun; 91(4):387-91. PubMed ID: 21461550
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In vivo transplantation of engineered human skin.
    Greenberg S; Margulis A; Garlick JA
    Methods Mol Biol; 2005; 289():425-30. PubMed ID: 15502203
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Decreased mRNA expression of several basement membrane components in basal cell carcinoma.
    Chopra A; Maitra B; Korman NJ
    J Invest Dermatol; 1998 Jan; 110(1):52-6. PubMed ID: 9424087
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cultured keratinocytes and dermal fibroblasts on a double-layer scaffold with bi-medium culture system.
    Huang YC; Wang TW; Sun JS; Lin FH
    Biomed Sci Instrum; 2003; 39():500-5. PubMed ID: 12724942
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Human keratinocytes cultured on collagen gels form an epidermis which synthesizes bullous pemphigoid antigens and alpha 2 beta 1 integrins and secretes laminin, type IV collagen, and heparan sulfate proteoglycan at the basal cell surface.
    Schafer IA; Kovach M; Price RL; Fratianne RB
    Exp Cell Res; 1991 Aug; 195(2):443-57. PubMed ID: 2070826
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bioengineering of living renal membranes consisting of hierarchical, bioactive supramolecular meshes and human tubular cells.
    Dankers PY; Boomker JM; Huizinga-van der Vlag A; Wisse E; Appel WP; Smedts FM; Harmsen MC; Bosman AW; Meijer W; van Luyn MJ
    Biomaterials; 2011 Jan; 32(3):723-33. PubMed ID: 20943265
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of keratinocytes on the biomechanical characteristics and pore microstructure of tissue engineered skin using deep dermal fibroblasts.
    Varkey M; Ding J; Tredget EE;
    Biomaterials; 2014 Dec; 35(36):9591-8. PubMed ID: 25176070
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cdc42 expression in keratinocytes is required for the maintenance of the basement membrane in skin.
    Wu X; Quondamatteo F; Brakebusch C
    Matrix Biol; 2006 Oct; 25(8):466-74. PubMed ID: 17049825
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Self-organization of skin cells in three-dimensional electrospun polystyrene scaffolds.
    Sun T; Mai S; Norton D; Haycock JW; Ryan AJ; MacNeil S
    Tissue Eng; 2005; 11(7-8):1023-33. PubMed ID: 16144438
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterisation of human fibroblasts as keratinocyte feeder layer using p63 isoforms status.
    Auxenfans C; Thépot A; Justin V; Hautefeuille A; Shahabeddin L; Damour O; Hainaut P
    Biomed Mater Eng; 2009; 19(4-5):365-72. PubMed ID: 20042803
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cytokines alter mRNA steady state levels for basement membrane proteins in human skin fibroblasts.
    Lankat-Buttgereit B; Kulozik M; Hunzelmann N; Krieg T
    J Dermatol Sci; 1991 Jul; 2(4):300-7. PubMed ID: 1911566
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modulating matrix-multicellular response using polysucrose-blended with poly-L-lactide or polydioxanone in electrospun scaffolds for skin tissue regeneration.
    Chummun I; Bhaw-Luximon A; Jhurry D
    J Biomed Mater Res A; 2018 Dec; 106(12):3275-3291. PubMed ID: 30367544
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Random and oriented electrospun fibers based on a multicomponent, in situ clickable elastin-like recombinamer system for dermal tissue engineering.
    González de Torre I; Ibáñez-Fonseca A; Quintanilla L; Alonso M; Rodríguez-Cabello JC
    Acta Biomater; 2018 May; 72():137-149. PubMed ID: 29574183
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Epithelial-stromal interactions modulating penetration of matrigel membranes by HPV 16-immortalized keratinocytes.
    Turner MA; Darragh T; Palefsky JM
    J Invest Dermatol; 1997 Nov; 109(5):619-25. PubMed ID: 9347788
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The use of PEGT/PBT as a dermal scaffold for skin tissue engineering.
    El-Ghalbzouri A; Lamme EN; van Blitterswijk C; Koopman J; Ponec M
    Biomaterials; 2004 Jul; 25(15):2987-96. PubMed ID: 14967531
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Assembly of basement membrane in vitro by cooperation between alveolar epithelial cells and pulmonary fibroblasts.
    Furuyama A; Kimata K; Mochitate K
    Cell Struct Funct; 1997 Dec; 22(6):603-14. PubMed ID: 9591052
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interleukin-1beta and tumor necrosis factor-alpha have opposite effects on fibroblasts and epithelial cells during basement membrane formation.
    Furuyama A; Hosokawa T; Mochitate K
    Matrix Biol; 2008 Jun; 27(5):429-40. PubMed ID: 18434122
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Expression of integrins and basement membrane components by wound keratinocytes.
    Larjava H; Salo T; Haapasalmi K; Kramer RH; Heino J
    J Clin Invest; 1993 Sep; 92(3):1425-35. PubMed ID: 8376596
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of a Full-Thickness Human Skin Equivalent In Vitro Model Derived from TERT-Immortalized Keratinocytes and Fibroblasts.
    Reijnders CM; van Lier A; Roffel S; Kramer D; Scheper RJ; Gibbs S
    Tissue Eng Part A; 2015 Sep; 21(17-18):2448-59. PubMed ID: 26135533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.