These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 27283913)

  • 1. Faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart related to cytosolic inorganic phosphate (Pi) accumulation.
    Korzeniewski B
    J Appl Physiol (1985); 2016 Aug; 121(2):424-37. PubMed ID: 27283913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of the effect of oxidative phosphorylation deficiencies on the skeletal muscle bioenergetic system in patients with mitochondrial myopathies.
    Korzeniewski B
    J Appl Physiol (1985); 2021 Aug; 131(2):768-777. PubMed ID: 34197225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of oxidative phosphorylation during work transitions results from its kinetic properties.
    Korzeniewski B
    J Appl Physiol (1985); 2014 Jan; 116(1):83-94. PubMed ID: 24157529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors determining the oxygen consumption rate (VO2) on-kinetics in skeletal muscles.
    Korzeniewski B; Zoladz JA
    Biochem J; 2004 May; 379(Pt 3):703-10. PubMed ID: 14744260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Each-step activation of oxidative phosphorylation is necessary to explain muscle metabolic kinetic responses to exercise and recovery in humans.
    Korzeniewski B; Rossiter HB
    J Physiol; 2015 Dec; 593(24):5255-68. PubMed ID: 26503399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of oxidative phosphorylation is different in electrically- and cortically-stimulated skeletal muscle.
    Korzeniewski B
    PLoS One; 2018; 13(4):e0195620. PubMed ID: 29698403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 'Idealized' state 4 and state 3 in mitochondria vs. rest and work in skeletal muscle.
    Korzeniewski B
    PLoS One; 2015; 10(2):e0117145. PubMed ID: 25647747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of oxidative phosphorylation through each-step activation (ESA): Evidences from computer modeling.
    Korzeniewski B
    Prog Biophys Mol Biol; 2017 May; 125():1-23. PubMed ID: 27939921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of OXPHOS complex deficiencies and ESA dysfunction in working intact skeletal muscle: implications for mitochondrial myopathies.
    Korzeniewski B
    Biochim Biophys Acta; 2015 Oct; 1847(10):1310-9. PubMed ID: 26188374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors determining training-induced changes in V̇O
    Korzeniewski B; Rossiter HB
    J Appl Physiol (1985); 2021 Feb; 130(2):498-507. PubMed ID: 33211591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of NADH/NAD+ transport activity and glycogen store on skeletal muscle energy metabolism during exercise: in silico studies.
    Li Y; Dash RK; Kim J; Saidel GM; Cabrera ME
    Am J Physiol Cell Physiol; 2009 Jan; 296(1):C25-46. PubMed ID: 18829894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of metabolism: the rest-to-work transition in skeletal muscle.
    Wilson DF
    Am J Physiol Endocrinol Metab; 2015 Nov; 309(9):E793-801. PubMed ID: 26394666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of metabolism: the work-to-rest transition in skeletal muscle.
    Wilson DF
    Am J Physiol Endocrinol Metab; 2016 Apr; 310(8):E633-E642. PubMed ID: 26837809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slow VO2 off-kinetics in skeletal muscle is associated with fast PCr off-kinetics--and inversely.
    Korzeniewski B; Zoladz JA
    J Appl Physiol (1985); 2013 Sep; 115(5):605-12. PubMed ID: 23788573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model of oxidative phosphorylation in mammalian skeletal muscle.
    Korzeniewski B; Zoladz JA
    Biophys Chem; 2001 Aug; 92(1-2):17-34. PubMed ID: 11527576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skeletal muscle bioenergetics during all-out exercise: mechanistic insight into the oxygen uptake slow component and neuromuscular fatigue.
    Broxterman RM; Layec G; Hureau TJ; Amann M; Richardson RS
    J Appl Physiol (1985); 2017 May; 122(5):1208-1217. PubMed ID: 28209743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. P
    Korzeniewski B
    Eur J Appl Physiol; 2019 Oct; 119(10):2201-2213. PubMed ID: 31399839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts.
    Scholz TD; Laughlin MR; Balaban RS; Kupriyanov VV; Heineman FW
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H82-91. PubMed ID: 7840306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of rapid changes in cytosolic pH on oxidative phosphorylation in skeletal muscle: theoretical studies.
    Korzeniewski B; Zoladz JA
    Biochem J; 2002 Jul; 365(Pt 1):249-58. PubMed ID: 12132435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative phosphorylation K
    Willis W; Willis E; Kuzmiak-Glancy S; Kras K; Hudgens J; Barakati N; Stern J; Mandarino L
    Biochim Biophys Acta Bioenerg; 2021 Aug; 1862(8):148430. PubMed ID: 33887230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.