These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 27283913)

  • 21. Regulation of oxidative phosphorylation in different muscles and various experimental conditions.
    Korzeniewski B
    Biochem J; 2003 Nov; 375(Pt 3):799-804. PubMed ID: 12901719
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Normal to enhanced intrinsic mitochondrial respiration in skeletal muscle of middle- to older-aged women and men with uncomplicated type 1 diabetes.
    Monaco CMF; Tarnopolsky MA; Dial AG; Nederveen JP; Rebalka IA; Nguyen M; Turner LV; Perry CGR; Ljubicic V; Hawke TJ
    Diabetologia; 2021 Nov; 64(11):2517-2533. PubMed ID: 34392397
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adenine nucleotide-creatine-phosphate module in myocardial metabolic system explains fast phase of dynamic regulation of oxidative phosphorylation.
    van Beek JH
    Am J Physiol Cell Physiol; 2007 Sep; 293(3):C815-29. PubMed ID: 17581855
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Muscle oxidative phosphorylation quantitation using creatine chemical exchange saturation transfer (CrCEST) MRI in mitochondrial disorders.
    DeBrosse C; Nanga RPR; Wilson N; D'Aquilla K; Elliott M; Hariharan H; Yan F; Wade K; Nguyen S; Worsley D; Parris-Skeete C; McCormick E; Xiao R; Cunningham ZZ; Fishbein L; Nathanson KL; Lynch DR; Stallings VA; Yudkoff M; Falk MJ; Reddy R; McCormack SE
    JCI Insight; 2016 Nov; 1(18):e88207. PubMed ID: 27812541
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanisms underlying extremely fast muscle V˙O
    Korzeniewski B; Rossiter HB; Zoladz JA
    Physiol Rep; 2018 Aug; 6(16):e13808. PubMed ID: 30156055
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Possible mechanisms underlying slow component of V̇O2 on-kinetics in skeletal muscle.
    Korzeniewski B; Zoladz JA
    J Appl Physiol (1985); 2015 May; 118(10):1240-9. PubMed ID: 25767031
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Training-induced acceleration of oxygen uptake kinetics in skeletal muscle: the underlying mechanisms.
    Zoladz JA; Korzeniewski B; Grassi B
    J Physiol Pharmacol; 2006 Nov; 57 Suppl 10():67-84. PubMed ID: 17242492
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental oxygen concentration influences rates of mitochondrial hydrogen peroxide release from cardiac and skeletal muscle preparations.
    Li Puma LC; Hedges M; Heckman JM; Mathias AB; Engstrom MR; Brown AB; Chicco AJ
    Am J Physiol Regul Integr Comp Physiol; 2020 May; 318(5):R972-R980. PubMed ID: 32233925
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Value of dynamic ³¹P magnetic resonance spectroscopy technique in in vivo assessment of the skeletal muscle mitochondrial function in type 2 diabetes.
    Wu FY; Tu HJ; Qin B; Chen T; Xu HF; Qi J; Wang DH
    Chin Med J (Engl); 2012 Jan; 125(2):281-6. PubMed ID: 22340560
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphocreatine synthesis by isolated rat skeletal muscle mitochondria is not dependent upon external ADP: a 31P NMR study.
    Kernec F; Le Tallec N; Nadal L; Bégué JM; Le Rumeur E
    Biochem Biophys Res Commun; 1996 Aug; 225(3):819-25. PubMed ID: 8780696
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of high-intensity training on mitochondrial fat oxidation in skeletal muscle and subcutaneous adipose tissue.
    Larsen S; Danielsen JH; Søndergård SD; Søgaard D; Vigelsoe A; Dybboe R; Skaaby S; Dela F; Helge JW
    Scand J Med Sci Sports; 2015 Feb; 25(1):e59-69. PubMed ID: 24845952
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inorganic phosphate is transported into mitochondria in the absence of ATP biosynthesis: an in vivo 31P NMR study in the human skeletal muscle.
    Iotti S; Lodi R; Gottardi G; Zaniol P; Barbiroli B
    Biochem Biophys Res Commun; 1996 Aug; 225(1):191-4. PubMed ID: 8769116
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biochemical background of the VO2 on-kinetics in skeletal muscles.
    Korzeniewski B; Zoladz JA
    J Physiol Sci; 2006 Feb; 56(1):1-12. PubMed ID: 16779908
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic disease of mitochondrial function evaluated by NMR and NIR spectroscopy of skeletal tissue.
    Chance B; Bank W
    Biochim Biophys Acta; 1995 May; 1271(1):7-14. PubMed ID: 7599229
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of training on skeletal muscle bioenergetic system in patients with mitochondrial myopathies: A computational study.
    Korzeniewski B
    Respir Physiol Neurobiol; 2022 Feb; 296():103799. PubMed ID: 34624544
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The dynamic regulation of myocardial oxidative phosphorylation: analysis of the response time of oxygen consumption.
    van Beek JH; Tian X; Zuurbier CJ; de Groot B; van Echteld CJ; Eijgelshoven MH; Hak JB
    Mol Cell Biochem; 1998 Jul; 184(1-2):321-44. PubMed ID: 9746328
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mitochondrial energy production correlates with the age-related BMI.
    Wortmann SB; Zweers-van Essen H; Rodenburg RJ; van den Heuvel LP; de Vries MC; Rasmussen-Conrad E; Smeitink JA; Morava E
    Pediatr Res; 2009 Jan; 65(1):103-8. PubMed ID: 19096353
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cytosolic, but not matrix, calcium is essential for adjustment of mitochondrial pyruvate supply.
    Szibor M; Gizatullina Z; Gainutdinov T; Endres T; Debska-Vielhaber G; Kunz M; Karavasili N; Hallmann K; Schreiber F; Bamberger A; Schwarzer M; Doenst T; Heinze HJ; Lessmann V; Vielhaber S; Kunz WS; Gellerich FN
    J Biol Chem; 2020 Apr; 295(14):4383-4397. PubMed ID: 32094224
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Capacity of oxidative phosphorylation in human skeletal muscle: new perspectives of mitochondrial physiology.
    Gnaiger E
    Int J Biochem Cell Biol; 2009 Oct; 41(10):1837-45. PubMed ID: 19467914
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of muscle energy states at low metabolic rates requires feedback control of mitochondrial respiratory chain activity by inorganic phosphate.
    Schmitz JP; Jeneson JA; van Oorschot JW; Prompers JJ; Nicolay K; Hilbers PA; van Riel NA
    PLoS One; 2012; 7(3):e34118. PubMed ID: 22470528
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.