These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 27284026)

  • 21. Whole genome sequence and manual annotation of Clostridium autoethanogenum, an industrially relevant bacterium.
    Humphreys CM; McLean S; Schatschneider S; Millat T; Henstra AM; Annan FJ; Breitkopf R; Pander B; Piatek P; Rowe P; Wichlacz AT; Woods C; Norman R; Blom J; Goesman A; Hodgman C; Barrett D; Thomas NR; Winzer K; Minton NP
    BMC Genomics; 2015 Dec; 16():1085. PubMed ID: 26692227
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Technical guide for genetic advancement of underdeveloped and intractable Clostridium.
    Pyne ME; Bruder M; Moo-Young M; Chung DA; Chou CP
    Biotechnol Adv; 2014; 32(3):623-41. PubMed ID: 24768687
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A two-stage process for the autotrophic and mixotrophic conversion of C1 gases into bacterial cellulose.
    Kang Y; Xiao J; Ding R; Xu K; Zhang T; Tremblay PL
    Bioresour Technol; 2022 Oct; 361():127711. PubMed ID: 35907600
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring biochemical pathways for mono-ethylene glycol (MEG) synthesis from synthesis gas.
    Islam MA; Hadadi N; Ataman M; Hatzimanikatis V; Stephanopoulos G
    Metab Eng; 2017 May; 41():173-181. PubMed ID: 28433737
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering Clostridium organisms as microbial cell-factories: challenges & opportunities.
    Charubin K; Bennett RK; Fast AG; Papoutsakis ET
    Metab Eng; 2018 Nov; 50():173-191. PubMed ID: 30055325
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthetic Biology on Acetogenic Bacteria for Highly Efficient Conversion of C1 Gases to Biochemicals.
    Jin S; Bae J; Song Y; Pearcy N; Shin J; Kang S; Minton NP; Soucaille P; Cho BK
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33076477
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of a clostridia-based cell-free system for prototyping genetic parts and metabolic pathways.
    Krüger A; Mueller AP; Rybnicky GA; Engle NL; Yang ZK; Tschaplinski TJ; Simpson SD; Köpke M; Jewett MC
    Metab Eng; 2020 Nov; 62():95-105. PubMed ID: 32540392
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coping with complexity in metabolic engineering.
    Mampel J; Buescher JM; Meurer G; Eck J
    Trends Biotechnol; 2013 Jan; 31(1):52-60. PubMed ID: 23183303
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gas fermentation - a biotechnological solution for today's challenges.
    Dürre P
    Microb Biotechnol; 2017 Jan; 10(1):14-16. PubMed ID: 27790842
    [No Abstract]   [Full Text] [Related]  

  • 30. An efficient cre-based workflow for genomic integration and expression of large biosynthetic pathways in Eubacterium limosum.
    Sanford PA; Blaby I; Yoshikuni Y; Woolston BM
    Biotechnol Bioeng; 2024 Oct; 121(10):3360-3366. PubMed ID: 38956879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic modeling of clostridia: current developments and applications.
    Dash S; Ng CY; Maranas CD
    FEMS Microbiol Lett; 2016 Feb; 363(4):. PubMed ID: 26755502
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Bioconversion of C1 gases and genetic engineering modification of gas-utilizing microorganisms].
    Zhou Y; Ruan Z; Fang C; Chen X; Xu H; Wang Z; Yuan Z
    Sheng Wu Gong Cheng Xue Bao; 2023 Aug; 39(8):3125-3142. PubMed ID: 37622352
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Developing a graduate training program in Synthetic Biology: SynBioCDT.
    Cazimoglu I; Darlington APS; Grigonyte A; Hoskin CEG; Liu J; Oppenheimer R; Siller-Farfán JA; Grierson C; Papachristodoulou A
    Synth Biol (Oxf); 2019; 4(1):ysz006. PubMed ID: 32995533
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conversion of fat-containing waste from the margarine manufacturing process into bacterial polyhydroxyalkanoates.
    Morais C; Freitas F; Cruz MV; Paiva A; Dionísio M; Reis MA
    Int J Biol Macromol; 2014 Nov; 71():68-73. PubMed ID: 24794198
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Actinobacterium Corynebacterium glutamicum, an Industrial Workhorse.
    Lee JY; Na YA; Kim E; Lee HS; Kim P
    J Microbiol Biotechnol; 2016 May; 26(5):807-22. PubMed ID: 26838341
    [TBL] [Abstract][Full Text] [Related]  

  • 36. From Knallgas Bacterium to Promising Biomanufacturing Host: The Evolution of Cupriavidus necator.
    Casey D; Diaz-Garcia L; Yu M; Tee KL; Wong TS
    Adv Biochem Eng Biotechnol; 2024 Oct; ():. PubMed ID: 39363001
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineering the heterotrophic carbon sources utilization range of Ralstonia eutropha H16 for applications in biotechnology.
    Volodina E; Raberg M; Steinbüchel A
    Crit Rev Biotechnol; 2016 Dec; 36(6):978-991. PubMed ID: 26329669
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synergistic investigation of natural and synthetic C1-trophic microorganisms to foster a circular carbon economy.
    Orsi E; Nikel PI; Nielsen LK; Donati S
    Nat Commun; 2023 Oct; 14(1):6673. PubMed ID: 37865689
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals.
    Borodina I; Nielsen J
    Biotechnol J; 2014 May; 9(5):609-20. PubMed ID: 24677744
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biochemical contacts and collaborations between China and the U.K. since 1911.
    Dodson GG
    Biochem Soc Trans; 2011 Oct; 39(5):1313-22. PubMed ID: 21936808
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.