These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 27284087)

  • 1. Exploring the interplay between experimental methods and the performance of predictors of binding affinity change upon mutations in protein complexes.
    Geng C; Vangone A; Bonvin AMJJ
    Protein Eng Des Sel; 2016 Aug; 29(8):291-299. PubMed ID: 27284087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iSEE: Interface structure, evolution, and energy-based machine learning predictor of binding affinity changes upon mutations.
    Geng C; Vangone A; Folkers GE; Xue LC; Bonvin AMJJ
    Proteins; 2019 Feb; 87(2):110-119. PubMed ID: 30417935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering protein therapeutics: predictive performances of a structure-based virtual affinity maturation protocol.
    Oberlin M; Kroemer R; Mikol V; Minoux H; Tastan E; Baurin N
    J Chem Inf Model; 2012 Aug; 52(8):2204-14. PubMed ID: 22788756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BindProfX: Assessing Mutation-Induced Binding Affinity Change by Protein Interface Profiles with Pseudo-Counts.
    Xiong P; Zhang C; Zheng W; Zhang Y
    J Mol Biol; 2017 Feb; 429(3):426-434. PubMed ID: 27899282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing computational methods for predicting protein stability upon mutation: good on average but not in the details.
    Potapov V; Cohen M; Schreiber G
    Protein Eng Des Sel; 2009 Sep; 22(9):553-60. PubMed ID: 19561092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PANDA: Predicting the change in proteins binding affinity upon mutations by finding a signal in primary structures.
    Abbasi WA; Abbas SA; Andleeb S
    J Bioinform Comput Biol; 2021 Aug; 19(4):2150015. PubMed ID: 34126874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepPPAPredMut: deep ensemble method for predicting the binding affinity change in protein-protein complexes upon mutation.
    Nikam R; Jemimah S; Gromiha MM
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38718170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DisruPPI: structure-based computational redesign algorithm for protein binding disruption.
    Choi Y; Furlon JM; Amos RB; Griswold KE; Bailey-Kellogg C
    Bioinformatics; 2018 Jul; 34(13):i245-i253. PubMed ID: 29949961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A natural upper bound to the accuracy of predicting protein stability changes upon mutations.
    Montanucci L; Martelli PL; Ben-Tal N; Fariselli P
    Bioinformatics; 2019 May; 35(9):1513-1517. PubMed ID: 30329016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expanding the frontiers of protein-protein modeling: from docking and scoring to binding affinity predictions and other challenges.
    Pallara C; Jiménez-García B; Pérez-Cano L; Romero-Durana M; Solernou A; Grosdidier S; Pons C; Moal IH; Fernandez-Recio J
    Proteins; 2013 Dec; 81(12):2192-200. PubMed ID: 23934865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. UEP: an open-source and fast classifier for predicting the impact of mutations in protein-protein complexes.
    Amengual-Rigo P; Fernández-Recio J; Guallar V
    Bioinformatics; 2021 Apr; 37(3):334-341. PubMed ID: 32761082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Approaches for Predicting Binding Partners, Interface Residues, and Binding Affinity of Protein-Protein Complexes.
    Yugandhar K; Gromiha MM
    Methods Mol Biol; 2017; 1484():237-253. PubMed ID: 27787830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating computational methods and experimental data for understanding the recognition mechanism and binding affinity of protein-protein complexes.
    Gromiha MM; Yugandhar K
    Prog Biophys Mol Biol; 2017 Sep; 128():33-38. PubMed ID: 28069340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling Binding Affinity of Pathological Mutations for Computational Protein Design.
    Romero-Durana M; Pallara C; Glaser F; Fernández-Recio J
    Methods Mol Biol; 2017; 1529():139-159. PubMed ID: 27914049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Best templates outperform homology models in predicting the impact of mutations on protein stability.
    Pak MA; Ivankov DN
    Bioinformatics; 2022 Sep; 38(18):4312-4320. PubMed ID: 35894930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the charge space of protein-protein association: a proteomic study.
    Shaul Y; Schreiber G
    Proteins; 2005 Aug; 60(3):341-52. PubMed ID: 15887221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volume-based solvation models out-perform area-based models in combined studies of wild-type and mutated protein-protein interfaces.
    Bougouffa S; Warwicker J
    BMC Bioinformatics; 2008 Oct; 9():448. PubMed ID: 18939984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PCA-MutPred: Prediction of Binding Free Energy Change Upon Missense Mutation in Protein-carbohydrate Complexes.
    Siva Shanmugam NR; Veluraja K; Michael Gromiha M
    J Mol Biol; 2022 Jun; 434(11):167526. PubMed ID: 35662456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling and fitting protein-protein complexes to predict change of binding energy.
    Dourado DF; Flores SC
    Sci Rep; 2016 May; 6():25406. PubMed ID: 27173910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting affinity- and specificity-enhancing mutations at protein-protein interfaces.
    Sharabi O; Shirian J; Shifman JM
    Biochem Soc Trans; 2013 Oct; 41(5):1166-9. PubMed ID: 24059503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.