These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 27285578)
1. Production and characterization of enzymatic cocktail produced by Aspergillus niger using green macroalgae as nitrogen source and its application in the pre-treatment for biogas production from Ulva rigida. Karray R; Hamza M; Sayadi S Bioresour Technol; 2016 Sep; 216():622-8. PubMed ID: 27285578 [TBL] [Abstract][Full Text] [Related]
2. Production and characterization of β-glucosidase from Aspergillus niger fermentation: Application for organic fraction of municipal solid waste hydrolysis and methane enhancement. Mlaik N; Sayadi S; Hamza M; Khoufi S Biotechnol Prog; 2020 Jan; 36(1):e2902. PubMed ID: 31469516 [TBL] [Abstract][Full Text] [Related]
3. Sequential bioprocessing of Ulva rigida to produce lignocellulolytic enzymes and to improve its nutritional value as aquaculture feed. Fernandes H; Salgado JM; Martins N; Peres H; Oliva-Teles A; Belo I Bioresour Technol; 2019 Jun; 281():277-285. PubMed ID: 30825831 [TBL] [Abstract][Full Text] [Related]
4. Optimization study on the hydrogen peroxide pretreatment and production of bioethanol from seaweed Ulva prolifera biomass. Li Y; Cui J; Zhang G; Liu Z; Guan H; Hwang H; Aker WG; Wang P Bioresour Technol; 2016 Aug; 214():144-149. PubMed ID: 27132221 [TBL] [Abstract][Full Text] [Related]
5. Green seaweeds (Ulva fasciata sp.) as nitrogen source for fungal cellulase production. Bentil JA; Thygesen A; Lange L; Mensah M; Meyer AS World J Microbiol Biotechnol; 2019 May; 35(6):82. PubMed ID: 31134384 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of ultrasonic, acid, thermo-alkaline and enzymatic pre-treatments on anaerobic digestion of Ulva rigida for biogas production. Karray R; Hamza M; Sayadi S Bioresour Technol; 2015; 187():205-213. PubMed ID: 25855526 [TBL] [Abstract][Full Text] [Related]
7. Enzymatic hydrolysis and production of bioethanol from common macrophytic green alga Ulva fasciata Delile. Trivedi N; Gupta V; Reddy CR; Jha B Bioresour Technol; 2013 Dec; 150():106-12. PubMed ID: 24157682 [TBL] [Abstract][Full Text] [Related]
8. Simple one-step treatment for saccharification of mango peels using an optimized enzyme cocktail of Aspergillus niger ATCC 9642. Yupanqui-Mendoza SL; Sánchez-Moncada BJ; Las-Casas B; Castro-Alvarado ÁP Braz J Microbiol; 2024 Jun; 55(2):1151-1166. PubMed ID: 38472698 [TBL] [Abstract][Full Text] [Related]
9. The analysis of macroalgae biomass found around Hawaii for bioethanol production. Yoza BA; Masutani EM Environ Technol; 2013; 34(13-16):1859-67. PubMed ID: 24350439 [TBL] [Abstract][Full Text] [Related]
10. Anaerobic co-digestion of Tunisian green macroalgae Ulva rigida with sugar industry wastewater for biogas and methane production enhancement. Karray R; Karray F; Loukil S; Mhiri N; Sayadi S Waste Manag; 2017 Mar; 61():171-178. PubMed ID: 28038905 [TBL] [Abstract][Full Text] [Related]
11. Finding stable cellulase and xylanase: evaluation of the synergistic effect of pH and temperature. Farinas CS; Loyo MM; Baraldo A; Tardioli PW; Neto VB; Couri S N Biotechnol; 2010 Dec; 27(6):810-5. PubMed ID: 20937420 [TBL] [Abstract][Full Text] [Related]
12. Bio-ethanol from water hyacinth biomass: an evaluation of enzymatic saccharification strategy. Aswathy US; Sukumaran RK; Devi GL; Rajasree KP; Singhania RR; Pandey A Bioresour Technol; 2010 Feb; 101(3):925-30. PubMed ID: 19796935 [TBL] [Abstract][Full Text] [Related]
13. Process and technoeconomic analysis of bioethanol production from residual biomass of marine macroalgae Ulva lactuca. Gengiah K; Rajendran N; Al-Ghanim KA; Govindarajan M; Gurunathan B Sci Total Environ; 2023 Apr; 868():161661. PubMed ID: 36669660 [TBL] [Abstract][Full Text] [Related]
14. Composition of Synthesized Cellulolytic Enzymes Varied with the Usage of Agricultural Substrates and Microorganisms. Kshirsagar S; Waghmare P; Saratale G; Saratale R; Kurade M; Jeon BH; Govindwar S Appl Biochem Biotechnol; 2020 Aug; 191(4):1695-1710. PubMed ID: 32206967 [TBL] [Abstract][Full Text] [Related]
15. Efficient saccharification of agave biomass using Aspergillus niger produced low-cost enzyme cocktail with hyperactive pectinase activity. Wang J; Chio C; Chen X; Su E; Cao F; Jin Y; Qin W Bioresour Technol; 2019 Jan; 272():26-33. PubMed ID: 30308404 [TBL] [Abstract][Full Text] [Related]
16. Potential of macroalgae for biodiesel production: Screening and evaluation studies. Abomohra AE; El-Naggar AH; Baeshen AA J Biosci Bioeng; 2018 Feb; 125(2):231-237. PubMed ID: 29037768 [TBL] [Abstract][Full Text] [Related]
17. Effect of media composition and growth conditions on production of beta-glucosidase by Aspergillus niger C-6. García-Kirchner O; Segura-Granados M; Rodríguez-Pascual P Appl Biochem Biotechnol; 2005; 121-124():347-59. PubMed ID: 15917612 [TBL] [Abstract][Full Text] [Related]
18. Effective production of fermentable sugars from brown macroalgae biomass. Wang D; Kim DH; Kim KH Appl Microbiol Biotechnol; 2016 Nov; 100(22):9439-9450. PubMed ID: 27687993 [TBL] [Abstract][Full Text] [Related]
19. Immunomodulating activities of acidic sulphated polysaccharides obtained from the seaweed Ulva rigida C. Agardh. Leiro JM; Castro R; Arranz JA; Lamas J Int Immunopharmacol; 2007 Jul; 7(7):879-88. PubMed ID: 17499190 [TBL] [Abstract][Full Text] [Related]
20. Aspergillus niger production of pectinase and α-galactosidase for enzymatic soy processing. Li Q; Ray CS; Callow NV; Loman AA; Islam SMM; Ju LK Enzyme Microb Technol; 2020 Mar; 134():109476. PubMed ID: 32044023 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]