These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 27285589)

  • 21. Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation.
    Fu L; Zhou P; Zhang S; Yang G
    Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2995-3000. PubMed ID: 23623124
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Implantation of air-dried bacterial nanocellulose conduits in a small-caliber vascular prosthesis rabbit model.
    Bao L; Hong FF; Li G; Hu G; Chen L
    Mater Sci Eng C Mater Biol Appl; 2021 Mar; 122():111922. PubMed ID: 33641915
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Performance of nanocellulose-producing bacterial strains in static and agitated cultures with different starting pH.
    Chen G; Wu G; Chen L; Wang W; Hong FF; Jönsson LJ
    Carbohydr Polym; 2019 Jul; 215():280-288. PubMed ID: 30981355
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production of hydroxyapatite-bacterial nanocellulose scaffold with assist of cellulose nanocrystals.
    Niamsap T; Lam NT; Sukyai P
    Carbohydr Polym; 2019 Feb; 205():159-166. PubMed ID: 30446091
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Magnetic targeting of smooth muscle cells in vitro using a magnetic bacterial cellulose to improve cell retention in tissue-engineering vascular grafts.
    Arias SL; Shetty A; Devorkin J; Allain JP
    Acta Biomater; 2018 Sep; 77():172-181. PubMed ID: 30004023
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of dehydration/rehydration of bacterial nanocellulose on its tensile strength and physicochemical properties.
    Stanisławska A; Staroszczyk H; Szkodo M
    Carbohydr Polym; 2020 May; 236():116023. PubMed ID: 32172842
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation of biocompatible magnetite-carboxymethyl cellulose nanocomposite: characterization of nanocomposite by FTIR, XRD, FESEM and TEM.
    Habibi N
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Oct; 131():55-8. PubMed ID: 24820322
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement.
    Nimeskern L; Martínez Ávila H; Sundberg J; Gatenholm P; Müller R; Stok KS
    J Mech Behav Biomed Mater; 2013 Jun; 22():12-21. PubMed ID: 23611922
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced ultrafine nanofibril biosynthesis of bacterial nanocellulose using a low-cost material by the adapted strain of Komagataeibacter xylinus MSKU 12.
    Naloka K; Matsushita K; Theeragool G
    Int J Biol Macromol; 2020 May; 150():1113-1120. PubMed ID: 31739023
    [TBL] [Abstract][Full Text] [Related]  

  • 30. "Nanocellulose" as a single nanofiber prepared from pellicle secreted by Gluconacetobacter xylinus using aqueous counter collision.
    Kose R; Mitani I; Kasai W; Kondo T
    Biomacromolecules; 2011 Mar; 12(3):716-20. PubMed ID: 21314117
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin.
    Müller A; Ni Z; Hessler N; Wesarg F; Müller FA; Kralisch D; Fischer D
    J Pharm Sci; 2013 Feb; 102(2):579-92. PubMed ID: 23192666
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oscillating Magnetic Field Regulates Cell Adherence and Endothelialization Based on Magnetic Nanoparticle-Modified Bacterial Cellulose.
    Zhang L; Wei F; Bai Q; Song D; Zheng Z; Wang Y; Liu X; Abdulrahman AA; Bian Y; Xu X; Chen C; Zhang H; Sun D
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52467-52478. PubMed ID: 33170636
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neuronal cells' behavior on polypyrrole coated bacterial nanocellulose three-dimensional (3D) scaffolds.
    Muller D; Silva JP; Rambo CR; Barra GM; Dourado F; Gama FM
    J Biomater Sci Polym Ed; 2013; 24(11):1368-77. PubMed ID: 23796037
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo.
    Martínez Ávila H; Feldmann EM; Pleumeekers MM; Nimeskern L; Kuo W; de Jong WC; Schwarz S; Müller R; Hendriks J; Rotter N; van Osch GJ; Stok KS; Gatenholm P
    Biomaterials; 2015 Mar; 44():122-33. PubMed ID: 25617132
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Addition of Various Cellulosic Components to Bacterial Nanocellulose: A Comparison of Surface Qualities and Crystalline Properties.
    Bang WY; Kim DH; Kang MD; Yang J; Huh T; Lim YW; Jung YH
    J Microbiol Biotechnol; 2021 Oct; 31(10):1366-1372. PubMed ID: 34319261
    [TBL] [Abstract][Full Text] [Related]  

  • 36. White biotechnology for cellulose manufacturing--the HoLiR concept.
    Kralisch D; Hessler N; Klemm D; Erdmann R; Schmidt W
    Biotechnol Bioeng; 2010 Mar; 105(4):740-7. PubMed ID: 19816981
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vascular cells responses to controlled surface structure and properties of bacterial nanocellulose artificial blood vessel after mercerization.
    Hu G; Bao L; Li G; Chen L; Hong FF
    Carbohydr Polym; 2023 Apr; 306():120572. PubMed ID: 36746593
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tolerance of the nanocellulose-producing bacterium Gluconacetobacter xylinus to lignocellulose-derived acids and aldehydes.
    Zhang S; Winestrand S; Chen L; Li D; Jönsson LJ; Hong F
    J Agric Food Chem; 2014 Oct; 62(40):9792-9. PubMed ID: 25186182
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In Vivo Curdlan/Cellulose Bionanocomposite Synthesis by Genetically Modified Gluconacetobacter xylinus.
    Fang J; Kawano S; Tajima K; Kondo T
    Biomacromolecules; 2015 Oct; 16(10):3154-60. PubMed ID: 26360299
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of tolerance of four bacterial nanocellulose-producing strains to lignocellulose-derived inhibitors.
    Zou X; Wu G; Stagge S; Chen L; Jönsson LJ; Hong FF
    Microb Cell Fact; 2017 Dec; 16(1):229. PubMed ID: 29268745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.