BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 27285897)

  • 1. The critical role of oxidative stress in the toxicity and metabolism of quinoxaline 1,4-di-N-oxides in vitro and in vivo.
    Wang X; Martínez MA; Cheng G; Liu Z; Huang L; Dai M; Chen D; Martínez-Larrañaga MR; Anadón A; Yuan Z
    Drug Metab Rev; 2016 May; 48(2):159-82. PubMed ID: 27285897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in Metabolism and Metabolic Toxicology of Quinoxaline 1,4-Di-N-oxides.
    An H; Li Y; Li Y; Gong S; Zhu Y; Li X; Zhou S; Wu Y
    Chem Res Toxicol; 2024 Apr; 37(4):528-539. PubMed ID: 38507288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deoxidation rates play a critical role in DNA damage mediated by important synthetic drugs, quinoxaline 1,4-dioxides.
    Wang X; Zhang H; Huang L; Pan Y; Li J; Chen D; Cheng G; Hao H; Tao Y; Liu Z; Yuan Z
    Chem Res Toxicol; 2015 Mar; 28(3):470-81. PubMed ID: 25626015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The metabolism of carbadox, olaquindox, mequindox, quinocetone and cyadox: an overview.
    Liu ZY; Sun ZL
    Med Chem; 2013 Dec; 9(8):1017-27. PubMed ID: 23521002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Further investigations into the genotoxicity of quinoxaline-di-N-oxides and their primary metabolites.
    Liu Q; Zhang J; Luo X; Ihsan A; Liu X; Dai M; Cheng G; Hao H; Wang X; Yuan Z
    Food Chem Toxicol; 2016 Jul; 93():145-57. PubMed ID: 27170491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High risk of adrenal toxicity of N1-desoxy quinoxaline 1,4-dioxide derivatives and the protection of oligomeric proanthocyanidins (OPC) in the inhibition of the expression of aldosterone synthetase in H295R cells.
    Wang X; Yang C; Ihsan A; Luo X; Guo P; Cheng G; Dai M; Chen D; Liu Z; Yuan Z
    Toxicology; 2016 Feb; 341-343():1-16. PubMed ID: 26802905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ROS mediated cytotoxicity of porcine adrenocortical cells induced by QdNOs derivatives in vitro.
    Huang XJ; Zhang HH; Wang X; Huang LL; Zhang LY; Yan CX; Liu Y; Yuan ZH
    Chem Biol Interact; 2010 May; 185(3):227-34. PubMed ID: 20188712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genotoxicity of quinocetone, cyadox and olaquindox in vitro and in vivo.
    Ihsan A; Wang X; Zhang W; Tu H; Wang Y; Huang L; Iqbal Z; Cheng G; Pan Y; Liu Z; Tan Z; Zhang Y; Yuan Z
    Food Chem Toxicol; 2013 Sep; 59():207-14. PubMed ID: 23774262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic and proteomic analysis of the inhibition of synthesis and secretion of aldosterone hormone induced by quinocetone in NCI-H295R cells.
    Wang X; Bai Y; Cheng G; Ihsan A; Zhu F; Wang Y; Tao Y; Chen D; Dai M; Liu Z; Yuan Z
    Toxicology; 2016 Mar; 350-352():1-14. PubMed ID: 27046791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-oxide reduction of quinoxaline-1,4-dioxides catalyzed by porcine aldehyde oxidase SsAOX1.
    Mu P; Zheng M; Xu M; Zheng Y; Tang X; Wang Y; Wu K; Chen Q; Wang L; Deng Y
    Drug Metab Dispos; 2014 Apr; 42(4):511-9. PubMed ID: 24440959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic and Molecular Basis of the Antibacterial Action of Quinoxaline 1,4-Di-N-Oxides against Escherichia coli.
    Cheng G; Li B; Wang C; Zhang H; Liang G; Weng Z; Hao H; Wang X; Liu Z; Dai M; Wang Y; Yuan Z
    PLoS One; 2015; 10(8):e0136450. PubMed ID: 26296207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of Antibacterial Action of Quinoxaline 1,4-di-
    Xu F; Cheng G; Hao H; Wang Y; Wang X; Chen D; Peng D; Liu Z; Yuan Z; Dai M
    Front Microbiol; 2016; 7():1948. PubMed ID: 28018297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxic metabolites, MAPK and Nrf2/Keap1 signaling pathways involved in oxidative toxicity in mice liver after chronic exposure to Mequindox.
    Liu Q; Lei Z; Huang A; Wu Q; Xie S; Awais I; Dai M; Wang X; Yuan Z
    Sci Rep; 2017 Feb; 7():41854. PubMed ID: 28157180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro antimicrobial activities of animal-used quinoxaline 1,4-di-N-oxides against mycobacteria, mycoplasma and fungi.
    Zhao Y; Cheng G; Hao H; Pan Y; Liu Z; Dai M; Yuan Z
    BMC Vet Res; 2016 Sep; 12(1):186. PubMed ID: 27600955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fumonisins: oxidative stress-mediated toxicity and metabolism in vivo and in vitro.
    Wang X; Wu Q; Wan D; Liu Q; Chen D; Liu Z; Martínez-Larrañaga MR; Martínez MA; Anadón A; Yuan Z
    Arch Toxicol; 2016 Jan; 90(1):81-101. PubMed ID: 26419546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxylation of quinocetone and carbadox is mediated by CYP1As in the chicken (Gallus gallus).
    Yang J; Liu Z; Li M; Qiu X
    Comp Biochem Physiol C Toxicol Pharmacol; 2013 Aug; 158(2):84-90. PubMed ID: 23726999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of marker residues of quinoxaline-1,4-di-N-oxides and its prototype identification by liquid chromatography tandem mass spectrometry.
    Li L; Liu R; Liu L; Guo Z; Zhou T; Yang Y; Yang H; He L
    Food Chem; 2024 Jun; 442():138395. PubMed ID: 38266409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quinoxaline 1,4-di-N-Oxides: Biological Activities and Mechanisms of Actions.
    Cheng G; Sa W; Cao C; Guo L; Hao H; Liu Z; Wang X; Yuan Z
    Front Pharmacol; 2016; 7():64. PubMed ID: 27047380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An appraisal on synthetic and pharmaceutical perspectives of quinoxaline 1,4-di-N-oxide scaffold.
    Agrawal N; Bhardwaj A
    Chem Biol Drug Des; 2022 Sep; 100(3):346-363. PubMed ID: 35610776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ochratoxin A: Toxicity, oxidative stress and metabolism.
    Tao Y; Xie S; Xu F; Liu A; Wang Y; Chen D; Pan Y; Huang L; Peng D; Wang X; Yuan Z
    Food Chem Toxicol; 2018 Feb; 112():320-331. PubMed ID: 29309824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.