These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 27286678)
1. A bio-inspired hybrid nanosack for graft vascularization at the omentum. Hwang PT; Lim DJ; Fee T; Alexander GC; Tambralli A; Andukuri A; Tian L; Cui W; Berry J; Gilbert SR; Jun HW Acta Biomater; 2016 Sep; 41():224-34. PubMed ID: 27286678 [TBL] [Abstract][Full Text] [Related]
2. Poly(ɛ-caprolactone)/gelatin composite electrospun scaffolds with porous crater-like structures for tissue engineering. Hwang PT; Murdock K; Alexander GC; Salaam AD; Ng JI; Lim DJ; Dean D; Jun HW J Biomed Mater Res A; 2016 Apr; 104(4):1017-29. PubMed ID: 26567028 [TBL] [Abstract][Full Text] [Related]
3. An anisotropically and heterogeneously aligned patterned electrospun scaffold with tailored mechanical property and improved bioactivity for vascular tissue engineering. Xu H; Li H; Ke Q; Chang J ACS Appl Mater Interfaces; 2015 Apr; 7(16):8706-18. PubMed ID: 25826222 [TBL] [Abstract][Full Text] [Related]
4. A hybrid biomimetic scaffold composed of electrospun polycaprolactone nanofibers and self-assembled peptide amphiphile nanofibers. Tambralli A; Blakeney B; Anderson J; Kushwaha M; Andukuri A; Dean D; Jun HW Biofabrication; 2009 Jun; 1(2):025001. PubMed ID: 20811101 [TBL] [Abstract][Full Text] [Related]
5. A hybrid biomimetic nanomatrix composed of electrospun polycaprolactone and bioactive peptide amphiphiles for cardiovascular implants. Andukuri A; Kushwaha M; Tambralli A; Anderson JM; Dean DR; Berry JL; Sohn YD; Yoon YS; Brott BC; Jun HW Acta Biomater; 2011 Jan; 7(1):225-33. PubMed ID: 20728588 [TBL] [Abstract][Full Text] [Related]
6. Supercritical CO Li S; Song C; Yang S; Yu W; Zhang W; Zhang G; Xi Z; Lu E Acta Biomater; 2019 Aug; 94():253-267. PubMed ID: 31154054 [TBL] [Abstract][Full Text] [Related]
7. Improved vascularization of porous scaffolds through growth factor delivery from heparinized polyethylene glycol hydrogels. Janse van Rensburg A; Davies NH; Oosthuysen A; Chokoza C; Zilla P; Bezuidenhout D Acta Biomater; 2017 Feb; 49():89-100. PubMed ID: 27865963 [TBL] [Abstract][Full Text] [Related]
8. Controlled release of vascular endothelial growth factor from spray-dried alginate microparticles in collagen-hydroxyapatite scaffolds for promoting vascularization and bone repair. Quinlan E; López-Noriega A; Thompson EM; Hibbitts A; Cryan SA; O'Brien FJ J Tissue Eng Regen Med; 2017 Apr; 11(4):1097-1109. PubMed ID: 25783558 [TBL] [Abstract][Full Text] [Related]
9. A novel porous scaffold fabrication technique for epithelial and endothelial tissue engineering. McHugh KJ; Tao SL; Saint-Geniez M J Mater Sci Mater Med; 2013 Jul; 24(7):1659-70. PubMed ID: 23625319 [TBL] [Abstract][Full Text] [Related]
10. The promotion of angiogenesis induced by three-dimensional porous beta-tricalcium phosphate scaffold with different interconnection sizes via activation of PI3K/Akt pathways. Xiao X; Wang W; Liu D; Zhang H; Gao P; Geng L; Yuan Y; Lu J; Wang Z Sci Rep; 2015 Mar; 5():9409. PubMed ID: 25797242 [TBL] [Abstract][Full Text] [Related]
11. Bicomponent electrospinning to fabricate three-dimensional hydrogel-hybrid nanofibrous scaffolds with spatial fiber tortuosity. Jin G; Lee S; Kim SH; Kim M; Jang JH Biomed Microdevices; 2014 Dec; 16(6):793-804. PubMed ID: 24972552 [TBL] [Abstract][Full Text] [Related]
12. In vitro assessment of three-dimensionally plotted nagelschmidtite bioceramic scaffolds with varied macropore morphologies. Xu M; Zhai D; Chang J; Wu C Acta Biomater; 2014 Jan; 10(1):463-76. PubMed ID: 24071000 [TBL] [Abstract][Full Text] [Related]
15. Living nanofiber yarn-based woven biotextiles for tendon tissue engineering using cell tri-culture and mechanical stimulation. Wu S; Wang Y; Streubel PN; Duan B Acta Biomater; 2017 Oct; 62():102-115. PubMed ID: 28864251 [TBL] [Abstract][Full Text] [Related]
16. Poly (glycerol sebacate)-poly (ε-caprolactone) blend nanofibrous scaffold as intrinsic bio- and immunocompatible system for corneal repair. Salehi S; Czugala M; Stafiej P; Fathi M; Bahners T; Gutmann JS; Singer BB; Fuchsluger TA Acta Biomater; 2017 Mar; 50():370-380. PubMed ID: 28069498 [TBL] [Abstract][Full Text] [Related]
17. Dual release of growth factor from nanocomposite fibrous scaffold promotes vascularisation and bone regeneration in rat critical sized calvarial defect. Kuttappan S; Mathew D; Jo JI; Tanaka R; Menon D; Ishimoto T; Nakano T; Nair SV; Nair MB; Tabata Y Acta Biomater; 2018 Sep; 78():36-47. PubMed ID: 30067947 [TBL] [Abstract][Full Text] [Related]
18. Small diameter vascular graft with fibroblast cells and electrospun poly (L-lactide-co-ε-caprolactone) scaffolds: Cell Matrix Engineering. Jang BS; Cheon JY; Kim SH; Park WH J Biomater Sci Polym Ed; 2018; 29(7-9):942-959. PubMed ID: 28816087 [TBL] [Abstract][Full Text] [Related]
19. Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect. Li J; Xu Q; Teng B; Yu C; Li J; Song L; Lai YX; Zhang J; Zheng W; Ren PG Acta Biomater; 2016 Sep; 42():389-399. PubMed ID: 27326916 [TBL] [Abstract][Full Text] [Related]
20. Pore size directs bone marrow stromal cell fate and tissue regeneration in nanofibrous macroporous scaffolds by mediating vascularization. Gupte MJ; Swanson WB; Hu J; Jin X; Ma H; Zhang Z; Liu Z; Feng K; Feng G; Xiao G; Hatch N; Mishina Y; Ma PX Acta Biomater; 2018 Dec; 82():1-11. PubMed ID: 30321630 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]