These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 27287101)

  • 1. Surface characterization, in vitro and in vivo biocompatibility of Mg-0.3Sr-0.3Ca for temporary cardiovascular implant.
    Bornapour M; Mahjoubi H; Vali H; Shum-Tim D; Cerruti M; Pekguleryuz M
    Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():72-84. PubMed ID: 27287101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocompatibility and biodegradability of Mg-Sr alloys: the formation of Sr-substituted hydroxyapatite.
    Bornapour M; Muja N; Shum-Tim D; Cerruti M; Pekguleryuz M
    Acta Biomater; 2013 Feb; 9(2):5319-30. PubMed ID: 22871640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnesium implant alloy with low levels of strontium and calcium: the third element effect and phase selection improve bio-corrosion resistance and mechanical performance.
    Bornapour M; Celikin M; Cerruti M; Pekguleryuz M
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():267-82. PubMed ID: 24411378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal exposure effects on the in vitro degradation and mechanical properties of Mg-Sr and Mg-Ca-Sr biodegradable implant alloys and the role of the microstructure.
    Bornapour M; Celikin M; Pekguleryuz M
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():16-24. PubMed ID: 25491955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocompatibility of fluoride-coated magnesium-calcium alloys with optimized degradation kinetics in a subcutaneous mouse model.
    Drynda A; Seibt J; Hassel T; Bach FW; Peuster M
    J Biomed Mater Res A; 2013 Jan; 101(1):33-43. PubMed ID: 22767427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A surface-eroding poly(1,3-trimethylene carbonate) coating for fully biodegradable magnesium-based stent applications: toward better biofunction, biodegradation and biocompatibility.
    Wang J; He Y; Maitz MF; Collins B; Xiong K; Guo L; Yun Y; Wan G; Huang N
    Acta Biomater; 2013 Nov; 9(10):8678-89. PubMed ID: 23467041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of self-assembly of 3-phosphonopropionic acid, 3-aminopropyltrimethoxysilane and dopamine on the corrosion behaviors and biocompatibility of a magnesium alloy.
    Pan CJ; Hou Y; Wang YN; Gao F; Liu T; Hou YH; Zhu YF; Ye W; Wang LR
    Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():132-143. PubMed ID: 27287107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemocompatibility and selective cell fate of polydopamine-assisted heparinized PEO/PLLA composite coating on biodegradable AZ31 alloy.
    Wei Z; Tian P; Liu X; Zhou B
    Colloids Surf B Biointerfaces; 2014 Sep; 121():451-60. PubMed ID: 25009102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The development of binary Mg-Ca alloys for use as biodegradable materials within bone.
    Li Z; Gu X; Lou S; Zheng Y
    Biomaterials; 2008 Apr; 29(10):1329-44. PubMed ID: 18191191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silk fibroin film-coated MgZnCa alloy with enhanced in vitro and in vivo performance prepared using surface activation.
    Wang C; Fang H; Qi X; Hang C; Sun Y; Peng Z; Wei W; Wang Y
    Acta Biomater; 2019 Jun; 91():99-111. PubMed ID: 31028907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro evaluation of MgSr and MgCaSr alloys via direct culture with bone marrow derived mesenchymal stem cells.
    Jiang W; Cipriano AF; Tian Q; Zhang C; Lopez M; Sallee A; Lin A; Cortez Alcaraz MC; Wu Y; Zheng Y; Liu H
    Acta Biomater; 2018 May; 72():407-423. PubMed ID: 29626698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A biodegradable AZ91 magnesium alloy coated with a thin nanostructured hydroxyapatite for improving the corrosion resistance.
    Mukhametkaliyev TM; Surmeneva MA; Vladescu A; Cotrut CM; Braic M; Dinu M; Vranceanu MD; Pana I; Mueller M; Surmenev RA
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():95-103. PubMed ID: 28415551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of mechanical properties in vivo and bone-implant interface strength of AZ31B magnesium alloy screws with Si-containing coating.
    Tan L; Wang Q; Lin X; Wan P; Zhang G; Zhang Q; Yang K
    Acta Biomater; 2014 May; 10(5):2333-40. PubMed ID: 24361529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ growth of Ca-Zn-P coatings on the Zn-pretreated WE43 Mg alloy to mitigate corrosion and enhance cytocompatibility.
    Li J; Li J; He N; Fu Q; Feng M; Li Q; Wang Q; Liu X; Xiao S; Jin W; Yu Z; Chu PK
    Colloids Surf B Biointerfaces; 2022 Oct; 218():112798. PubMed ID: 36030726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and biocompatibility of a novel corrodible fluoride-coated magnesium-calcium alloy with improved degradation kinetics and adequate mechanical properties for cardiovascular applications.
    Drynda A; Hassel T; Hoehn R; Perz A; Bach FW; Peuster M
    J Biomed Mater Res A; 2010 May; 93(2):763-75. PubMed ID: 19653306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic layer deposited ZrO
    Yang Q; Yuan W; Liu X; Zheng Y; Cui Z; Yang X; Pan H; Wu S
    Acta Biomater; 2017 Aug; 58():515-526. PubMed ID: 28611003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg-Li-(Al)-(RE) alloys for future cardiovascular stent application.
    Zhou WR; Zheng YF; Leeflang MA; Zhou J
    Acta Biomater; 2013 Nov; 9(10):8488-98. PubMed ID: 23385218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced antimicrobial properties, cytocompatibility, and corrosion resistance of plasma-modified biodegradable magnesium alloys.
    Zhao Y; Jamesh MI; Li WK; Wu G; Wang C; Zheng Y; Yeung KW; Chu PK
    Acta Biomater; 2014 Jan; 10(1):544-56. PubMed ID: 24140607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding corrosion behavior of Mg-Zn-Ca alloys from subcutaneous mouse model: effect of Zn element concentration and plasma electrolytic oxidation.
    Jang Y; Tan Z; Jurey C; Xu Z; Dong Z; Collins B; Yun Y; Sankar J
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():28-40. PubMed ID: 25579893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructure, biocorrosion and cytotoxicity evaluations of rapid solidified Mg-3Ca alloy ribbons as a biodegradable material.
    Gu XN; Li XL; Zhou WR; Cheng Y; Zheng YF
    Biomed Mater; 2010 Jun; 5(3):35013. PubMed ID: 20505233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.