BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 27287116)

  • 1. Antimicrobial surface functionalization of PVC by a guanidine based antimicrobial polymer.
    Villanueva ME; González JA; Rodríguez-Castellón E; Teves S; Copello GJ
    Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():214-220. PubMed ID: 27287116
    [No Abstract]   [Full Text] [Related]  

  • 2. Interactions of biocidal guanidine hydrochloride polymer analogs with model membranes: a comparative biophysical study.
    Zhou Z; Zheng A; Zhong J
    Acta Biochim Biophys Sin (Shanghai); 2011 Sep; 43(9):729-37. PubMed ID: 21807631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Simultaneously Antimicrobial, Protein-Repellent, and Cell-Compatible Polyzwitterion Network.
    Kurowska M; Eickenscheidt A; Guevara-Solarte DL; Widyaya VT; Marx F; Al-Ahmad A; Lienkamp K
    Biomacromolecules; 2017 Apr; 18(4):1373-1386. PubMed ID: 28269987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of modified guanidine-based polymers and their antimicrobial activities revealed by AFM and CLSM.
    Qian L; Xiao H; Zhao G; He B
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):1895-901. PubMed ID: 21488703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel antimicrobial organic thermal stabilizer and co-stabilizer for rigid PVC.
    Fahmy MM; Mohamed RR; Mohamed NA
    Molecules; 2012 Jul; 17(7):7927-40. PubMed ID: 22751259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of biologically active and photostable rigid poly(vinyl chloride).
    Rabie ST; El-Saidi MM; Mohamed NR
    J Biomed Mater Res A; 2012 Dec; 100(12):3503-10. PubMed ID: 23015476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymer-Based Surfaces Designed to Reduce Biofilm Formation: From Antimicrobial Polymers to Strategies for Long-Term Applications.
    Riga EK; Vöhringer M; Widyaya VT; Lienkamp K
    Macromol Rapid Commun; 2017 Oct; 38(20):. PubMed ID: 28846821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial behaviors on polymer surfaces with organic and inorganic antimicrobial compounds.
    Ji J; Zhang W
    J Biomed Mater Res A; 2009 Feb; 88(2):448-53. PubMed ID: 18306288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimicrobial N-halamine polymers and coatings: a review of their synthesis, characterization, and applications.
    Hui F; Debiemme-Chouvy C
    Biomacromolecules; 2013 Mar; 14(3):585-601. PubMed ID: 23391154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipase degradation of plasticized polyvinyl chloride endotracheal tube surfaces to create nanoscale features.
    Machado MC; Webster TJ
    Int J Nanomedicine; 2017; 12():2109-2115. PubMed ID: 28352177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and preservative application of quaternized carboxymethyl chitosan containing guanidine groups.
    Sang W; Tang Z; He MY; Hua YP; Xu Q
    Int J Biol Macromol; 2015 Apr; 75():489-94. PubMed ID: 25592843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Riboflavin Surface Modification of Poly(vinyl chloride) for Light-Triggered Control of Bacterial Biofilm and Virus Inactivation.
    Munoz M; El-Khoury A; Eren Cimenci C; Gonzalez-Gomez M; Hunter RA; Lomboni D; Variola F; Rotstein BH; Vono LLR; Rossi LM; Edwards AM; Alarcon EI
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):32251-32262. PubMed ID: 34181389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel "anchor modification" of polymeric biomaterial surfaces by the utilization of cyclodextrin inclusion complex supramolecules.
    Zhao X; Courtney JM
    J Biomed Mater Res A; 2009 Jul; 90(1):282-91. PubMed ID: 18508336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic effects of chitosan-guanidine complexes on enhancing antimicrobial activity and wet-strength of paper.
    Sun S; An Q; Li X; Qian L; He B; Xiao H
    Bioresour Technol; 2010 Jul; 101(14):5693-700. PubMed ID: 20202835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymeric N-halamine latex emulsions for use in antimicrobial paints.
    Cao Z; Sun Y
    ACS Appl Mater Interfaces; 2009 Feb; 1(2):494-504. PubMed ID: 20353242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the antimicrobial activity of polyisoprene based surfaces.
    Badawy H; Brunellière J; Veryaskina M; Brotons G; Sablé S; Lanneluc I; Lambert K; Marmey P; Milsted A; Cutright T; Nourry A; Mouget JL; Pasetto P
    Int J Mol Sci; 2015 Feb; 16(3):4392-415. PubMed ID: 25706513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, characterization and anti-microbial activity of phenylurea-formaldehyde resin (PUF) and its polymer metal complexes (PUF-Mn(II).
    Ahamad T; Alshehri SM
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Oct; 96():179-87. PubMed ID: 22683552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-activity relationships of oligoguanidines-influence of counterion, diamine, and average molecular weight on biocidal activities.
    Albert M; Feiertag P; Hayn G; Saf R; Hönig H
    Biomacromolecules; 2003; 4(6):1811-7. PubMed ID: 14606913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-pot synthesize of dendritic hyperbranched PAMAM and assessment as a broad spectrum antimicrobial agent and anti-biofilm.
    Labena A; Kabel KI; Farag RK
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():1150-9. PubMed ID: 26478415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Period four metal nanoparticles on the inhibition of biofouling.
    Chapman J; Weir E; Regan F
    Colloids Surf B Biointerfaces; 2010 Jul; 78(2):208-16. PubMed ID: 20356719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.