These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
332 related articles for article (PubMed ID: 27287117)
1. Superior hybrid hydrogels of polyacrylamide enhanced by bacterial cellulose nanofiber clusters. Yuan N; Xu L; Zhang L; Ye H; Zhao J; Liu Z; Rong J Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():221-230. PubMed ID: 27287117 [TBL] [Abstract][Full Text] [Related]
2. Thermo-responsive and compression properties of TEMPO-oxidized cellulose nanofiber-modified PNIPAm hydrogels. Wei J; Chen Y; Liu H; Du C; Yu H; Zhou Z Carbohydr Polym; 2016 Aug; 147():201-207. PubMed ID: 27178925 [TBL] [Abstract][Full Text] [Related]
3. Bio-based poly (γ-glutamic acid) hydrogels reinforced with bacterial cellulose nanofibers exhibiting superior mechanical properties and cytocompatibility. Dou C; Li Z; Gong J; Li Q; Qiao C; Zhang J Int J Biol Macromol; 2021 Feb; 170():354-365. PubMed ID: 33359810 [TBL] [Abstract][Full Text] [Related]
4. Release of ciprofloxacin drugs by nano gold embedded cellulose grafted polyacrylamide hybrid nanocomposite hydrogels. Prusty K; Swain SK Int J Biol Macromol; 2019 Apr; 126():765-775. PubMed ID: 30597238 [TBL] [Abstract][Full Text] [Related]
5. Bacterial cellulose nanofibrils-reinforced composite hydrogels for mechanical compression-responsive on-demand drug release. Park D; Kim JW; Shin K; Kim JW Carbohydr Polym; 2021 Nov; 272():118459. PubMed ID: 34420719 [TBL] [Abstract][Full Text] [Related]
6. Bone-like apatite formation in biocompatible phosphate-crosslinked bacterial cellulose-based hydrogels for bone tissue engineering applications. Suneetha M; Kim H; Han SS Int J Biol Macromol; 2024 Jan; 256(Pt 2):128364. PubMed ID: 38000603 [TBL] [Abstract][Full Text] [Related]
7. Anisotropic swelling and mechanical behavior of composite bacterial cellulose-poly(acrylamide or acrylamide-sodium acrylate) hydrogels. Buyanov AL; Gofman IV; Revel'skaya LG; Khripunov AK; Tkachenko AA J Mech Behav Biomed Mater; 2010 Jan; 3(1):102-11. PubMed ID: 19878907 [TBL] [Abstract][Full Text] [Related]
9. Robust All-Cellulose Nanofiber Composite from Stack-Up Bacterial Cellulose Hydrogels via Self-Aggregation Forces. Li Z; Li X; Ren J; Wu B; Luo Q; Liu X; Pei C J Agric Food Chem; 2020 Mar; 68(9):2696-2701. PubMed ID: 32031789 [TBL] [Abstract][Full Text] [Related]
10. High-strength cellulose-polyacrylamide hydrogels: Mechanical behavior and structure depending on the type of cellulose. Buyanov AL; Gofman IV; Saprykina NN J Mech Behav Biomed Mater; 2019 Dec; 100():103385. PubMed ID: 31400696 [TBL] [Abstract][Full Text] [Related]
11. Poly(hydroxybutyrate)/cellulose acetate blend nanofiber scaffolds: Preparation, characterization and cytocompatibility. Zhijiang C; Yi X; Haizheng Y; Jia J; Liu Y Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():757-67. PubMed ID: 26478369 [TBL] [Abstract][Full Text] [Related]
12. Stretchable, tough, self-recoverable, and cytocompatible chitosan/cellulose nanocrystals/polyacrylamide hybrid hydrogels. Huang W; Wang Y; McMullen LM; McDermott MT; Deng H; Du Y; Chen L; Zhang L Carbohydr Polym; 2019 Oct; 222():114977. PubMed ID: 31320104 [TBL] [Abstract][Full Text] [Related]
13. A novel polyacrylamide nanocomposite hydrogel reinforced with natural chitosan nanofibers. Zhou C; Wu Q Colloids Surf B Biointerfaces; 2011 May; 84(1):155-62. PubMed ID: 21273050 [TBL] [Abstract][Full Text] [Related]
14. High-Strength, Strongly Bonded Nanocomposite Hydrogels for Cartilage Repair. Awasthi S; Gaur JK; Pandey SK; Bobji MS; Srivastava C ACS Appl Mater Interfaces; 2021 Jun; 13(21):24505-24523. PubMed ID: 34027653 [TBL] [Abstract][Full Text] [Related]
15. Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients. Essawy HA; Ghazy MB; El-Hai FA; Mohamed MF Int J Biol Macromol; 2016 Aug; 89():144-51. PubMed ID: 27126169 [TBL] [Abstract][Full Text] [Related]
16. Simple green approach to reinforce natural rubber with bacterial cellulose nanofibers. Trovatti E; Carvalho AJ; Ribeiro SJ; Gandini A Biomacromolecules; 2013 Aug; 14(8):2667-74. PubMed ID: 23782026 [TBL] [Abstract][Full Text] [Related]
17. Bioinspired Mineralization with Hydroxyapatite and Hierarchical Naturally Aligned Nanofibrillar Cellulose. Qi Y; Cheng Z; Ye Z; Zhu H; Aparicio C ACS Appl Mater Interfaces; 2019 Aug; 11(31):27598-27604. PubMed ID: 31302999 [TBL] [Abstract][Full Text] [Related]
18. Ecofriendly green biosynthesis and characterization of novel bacteriocin-loaded bacterial cellulose nanofiber from Gluconobacter cerinus HDX-1. Du R; Ping W; Song G; Ge J Int J Biol Macromol; 2021 Dec; 193(Pt A):693-701. PubMed ID: 34737079 [TBL] [Abstract][Full Text] [Related]
19. Mechanically strong and pH-responsive carboxymethyl chitosan/graphene oxide/polyacrylamide nanocomposite hydrogels with fast recoverability. Chen Y; Wang H; Yu J; Wang Y; Zhu J; Hu Z J Biomater Sci Polym Ed; 2017 Nov; 28(16):1899-1917. PubMed ID: 28726563 [TBL] [Abstract][Full Text] [Related]
20. Electrospun nanofiber-reinforced three-dimensional chitosan matrices: Architectural, mechanical and biological properties. Wang L; Lv H; Liu L; Zhang Q; Nakielski P; Si Y; Cao J; Li X; Pierini F; Yu J; Ding B J Colloid Interface Sci; 2020 Apr; 565():416-425. PubMed ID: 31982708 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]