These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 27287149)

  • 41. Microstructure, mechanical property, corrosion behavior, and in vitro biocompatibility of Zr-Mo alloys.
    Zhou FY; Wang BL; Qiu KJ; Li L; Lin JP; Li HF; Zheng YF
    J Biomed Mater Res B Appl Biomater; 2013 Feb; 101(2):237-46. PubMed ID: 23143798
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Preparation and properties of porous Ti-10Mo alloy by selective laser sintering.
    Xie F; He X; Lu X; Cao S; Qu X
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1085-90. PubMed ID: 23827546
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Extraordinary high strength Ti-Zr-Ta alloys through nanoscaled, dual-cubic spinodal reinforcement.
    Biesiekierski A; Ping D; Li Y; Lin J; Munir KS; Yamabe-Mitarai Y; Wen C
    Acta Biomater; 2017 Apr; 53():549-558. PubMed ID: 28163238
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of Mo contents on the microstructure, properties and cytocompatibility of the microwave sintered porous Ti-Mo alloys.
    Xu JL; Tao SC; Bao LZ; Luo JM; Zheng YF
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():156-165. PubMed ID: 30678900
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structure-property relationship of cast Ti-Nb alloys.
    Lee CM; Ju CP; Chern Lin JH
    J Oral Rehabil; 2002 Apr; 29(4):314-22. PubMed ID: 11966963
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of thermomechanical treatment on the superelasticity of Ti-7.5Nb-4Mo-2Sn biomedical alloy.
    Zhang DC; Tan CG; Tang DM; Zhang Y; Lin JG; Wen CE
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():76-86. PubMed ID: 25280682
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Deformation behavior of metastable β-type Ti-25Nb-2Mo-4Sn alloy for biomedical applications.
    Guo S; Meng QK; Cheng XN; Zhao XQ
    J Mech Behav Biomed Mater; 2014 Oct; 38():26-32. PubMed ID: 25011015
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanotube nucleation phenomena on Ti-25Ta-xZr alloys for implants using ATO technique.
    Kim HJ; Jeong YH; Brantley WA; Choe HC
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7569-73. PubMed ID: 25942827
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microstructure and mechanical behavior of metal injection molded Ti-Nb binary alloys as biomedical material.
    Zhao D; Chang K; Ebel T; Qian M; Willumeit R; Yan M; Pyczak F
    J Mech Behav Biomed Mater; 2013 Dec; 28():171-82. PubMed ID: 23994942
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thermal and mechanical characteristics of stainless steel, titanium-molybdenum, and nickel-titanium archwires.
    Kusy RP; Whitley JQ
    Am J Orthod Dentofacial Orthop; 2007 Feb; 131(2):229-37. PubMed ID: 17276864
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A thermo-mechanical treatment to improve the superelastic performances of biomedical Ti-26Nb and Ti-20Nb-6Zr (at.%) alloys.
    Sun F; Hao YL; Nowak S; Gloriant T; Laheurte P; Prima F
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1864-72. PubMed ID: 22098885
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of heat treatment and oxygen doping on the mechanical properties and biocompatibility of titanium-niobium binary alloys.
    da Silva LM; Claro AP; Donato TA; Arana-Chavez VE; Moraes JC; Buzalaf MA; Grandini CR
    Artif Organs; 2011 May; 35(5):516-21. PubMed ID: 21595721
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Preparation and characterization of novel as-cast Ti-Mo-Nb alloys for biomedical applications.
    Cardoso GC; de Almeida GS; Corrêa DOG; Zambuzzi WF; Buzalaf MAR; Correa DRN; Grandini CR
    Sci Rep; 2022 Jul; 12(1):11874. PubMed ID: 35831317
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanical properties and microstructure of Ti-35.5Nb-5.7Ta beta alloy.
    Bartakova S; Prachar P; Dvorak I; Hruby V; Vanek J; Pospichal M; Svoboda E; Martikan A; Konecna H; Sedlak I
    Bratisl Lek Listy; 2015; 116(2):88-92. PubMed ID: 25665472
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of nickel addition on microstructure and properties of Ti-Co-Ni alloys.
    Chern Lin JH; Chen YF; Ju CP
    Biomaterials; 1995 Dec; 16(18):1401-7. PubMed ID: 8590767
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Precipitation hardening and microstructure evolution of the Ti-7Nb-10Mo alloy during aging.
    Yi R; Liu H; Yi D; Wan W; Wang B; Jiang Y; Yang Q; Wang D; Gao Q; Xu Y; Tang Q
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():577-86. PubMed ID: 27040253
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanical properties and microstructure of Ti-Mn alloys produced via powder metallurgy for biomedical applications.
    Alshammari Y; Yang F; Bolzoni L
    J Mech Behav Biomed Mater; 2019 Mar; 91():391-397. PubMed ID: 30665199
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bending springback behavior related to deformation-induced phase transformations in Ti-12Cr and Ti-29Nb-13Ta-4.6Zr alloys for spinal fixation applications.
    Liu H; Niinomi M; Nakai M; Hieda J; Cho K
    J Mech Behav Biomed Mater; 2014 Jun; 34():66-74. PubMed ID: 24561725
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microstructure, mechanical properties and cytocompatibility of stable beta Ti-Mo-Ta sintered alloys.
    Delvat E; Gordin DM; Gloriant T; Duval JL; Nagel MD
    J Mech Behav Biomed Mater; 2008 Oct; 1(4):345-51. PubMed ID: 19627799
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In situ fabrication of a titanium-niobium alloy with tailored microstructures, enhanced mechanical properties and biocompatibility by using selective laser melting.
    Zhao D; Han C; Li J; Liu J; Wei Q
    Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110784. PubMed ID: 32279779
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.