These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 27287149)

  • 61. β-Type Zr-Nb-Ti biomedical materials with high plasticity and low modulus for hard tissue replacements.
    Nie L; Zhan Y; Hu T; Chen X; Wang C
    J Mech Behav Biomed Mater; 2014 Jan; 29():1-6. PubMed ID: 24036526
    [TBL] [Abstract][Full Text] [Related]  

  • 62. High recoverable strain tailoring by Zr adjustment of sintered Ti-13Nb-(0-6)Zr biomedical alloys.
    Wu J; Li H; Yuan B; Gao Y
    J Mech Behav Biomed Mater; 2017 Nov; 75():574-580. PubMed ID: 28863399
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Discriminating β, α and α″ phases in metastable β titanium alloys via segmentation: A combined electron backscattering diffraction and energy-dispersive X-ray spectroscopy approach.
    Niessen F; Gazder AA
    Ultramicroscopy; 2020 Apr; 211():112943. PubMed ID: 32062056
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Structure and Mechanical Properties of As-Cast Ti-5Sn-xMo Alloys.
    Yu HN; Hsu HC; Wu SC; Hsu SK; Ho WF
    Materials (Basel); 2017 Apr; 10(5):. PubMed ID: 28772820
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Influence of Molybdenum on the Microstructure, Mechanical Properties and Corrosion Resistance of Ti
    Glowka K; Zubko M; Świec P; Prusik K; Szklarska M; Chrobak D; Lábár JL; Stróż D
    Materials (Basel); 2022 Jan; 15(1):. PubMed ID: 35009538
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Influence of Si addition on the microstructure and mechanical properties of Ti-35Nb alloy for applications in orthopedic implants.
    Tavares AM; Ramos WS; de Blas JC; Lopes ES; Caram R; Batista WW; Souza SA
    J Mech Behav Biomed Mater; 2015 Nov; 51():74-87. PubMed ID: 26218870
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Experimental titanium alloys for dental applications.
    Faria AC; Rodrigues RC; Rosa AL; Ribeiro RF
    J Prosthet Dent; 2014 Dec; 112(6):1448-60. PubMed ID: 25088209
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effect of Thermomechanical Treatments on the Phases, Microstructure, Microhardness and Young's Modulus of Ti-25Ta-Zr Alloys.
    Kuroda PAB; Quadros FF; Araújo RO; Afonso CRM; Grandini CR
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31574978
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Development and properties of dental Ti-Zr binary alloys.
    Jiang J; Zhou C; Zhao Y; He F; Wang X
    J Mech Behav Biomed Mater; 2020 Dec; 112():104048. PubMed ID: 32920276
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Structure, mechanical properties, and grindability of dental Ti-Zr alloys.
    Ho WF; Chen WK; Wu SC; Hsu HC
    J Mater Sci Mater Med; 2008 Oct; 19(10):3179-86. PubMed ID: 18437533
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Study of the surface wear resistance and biological properties of the Ti-Zr-Nb-Sn alloy for dental restoration.
    Hu X; Wei Q; Li CY; Deng JY; Liu S; Zhang LY
    Biomed Mater; 2010 Oct; 5(5):054107. PubMed ID: 20876964
    [TBL] [Abstract][Full Text] [Related]  

  • 72. In vitro performance assessment of new beta Ti-Mo-Nb alloy compositions.
    Neacsu P; Gordin DM; Mitran V; Gloriant T; Costache M; Cimpean A
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():105-13. PubMed ID: 25492178
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Physical, mechanical, and flexural properties of 3 orthodontic wires: an in-vitro study.
    Juvvadi SR; Kailasam V; Padmanabhan S; Chitharanjan AB
    Am J Orthod Dentofacial Orthop; 2010 Nov; 138(5):623-30. PubMed ID: 21055604
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Antibacterial investigation of titanium-copper alloys using luminescent Staphylococcus epidermidis in a direct contact test.
    Fowler L; Janson O; Engqvist H; Norgren S; Öhman-Mägi C
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():707-714. PubMed ID: 30678959
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Mechanical properties of the binary titanium-zirconium alloys and their potential for biomedical materials.
    Kobayashi E; Matsumoto S; Doi H; Yoneyama T; Hamanaka H
    J Biomed Mater Res; 1995 Aug; 29(8):943-50. PubMed ID: 7593037
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Microstructure and mechanical behavior of superelastic Ti-24Nb-0.5O and Ti-24Nb-0.5N biomedical alloys.
    Ramarolahy A; Castany P; Prima F; Laheurte P; Péron I; Gloriant T
    J Mech Behav Biomed Mater; 2012 May; 9():83-90. PubMed ID: 22498286
    [TBL] [Abstract][Full Text] [Related]  

  • 77. In situ elaboration of a binary Ti-26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders.
    Fischer M; Joguet D; Robin G; Peltier L; Laheurte P
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():852-9. PubMed ID: 26952492
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Mechanical properties of low modulus beta titanium alloys designed from the electronic approach.
    Laheurte P; Prima F; Eberhardt A; Gloriant T; Wary M; Patoor E
    J Mech Behav Biomed Mater; 2010 Nov; 3(8):565-73. PubMed ID: 20826362
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Strengthening mechanism and corrosion resistance of beta-type Ti-Nb-Zr-Mn alloys.
    Jawed SF; Rabadia CD; Liu YJ; Wang LQ; Qin P; Li YH; Zhang XH; Zhang LC
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110728. PubMed ID: 32204038
    [TBL] [Abstract][Full Text] [Related]  

  • 80. In-vitro evaluation of the material characteristics of stainless steel and beta-titanium orthodontic wires.
    Verstrynge A; Van Humbeeck J; Willems G
    Am J Orthod Dentofacial Orthop; 2006 Oct; 130(4):460-70. PubMed ID: 17045145
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.