These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 27287280)

  • 1. Cortical bone fracture analysis using XFEM - case study.
    Idkaidek A; Jasiuk I
    Int J Numer Method Biomed Eng; 2017 Apr; 33(4):. PubMed ID: 27287280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An interface damage model that captures crack propagation at the microscale in cortical bone using XFEM.
    Gustafsson A; Khayyeri H; Wallin M; Isaksson H
    J Mech Behav Biomed Mater; 2019 Feb; 90():556-565. PubMed ID: 30472565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of the effect of reduced compositional heterogeneity on fracture resistance of human cortical bone using finite element modeling.
    Demirtas A; Curran E; Ural A
    Bone; 2016 Oct; 91():92-101. PubMed ID: 27451083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of ageing on microstructure and fracture behavior of cortical bone as determined by experiment and Extended Finite Element Method (XFEM).
    Yadav RN; Uniyal P; Sihota P; Kumar S; Dhiman V; Goni VG; Sahni D; Bhadada SK; Kumar N
    Med Eng Phys; 2021 Jul; 93():100-112. PubMed ID: 34154770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Material heterogeneity, microstructure, and microcracks demonstrate differential influence on crack initiation and propagation in cortical bone.
    Demirtas A; Ural A
    Biomech Model Mechanobiol; 2018 Oct; 17(5):1415-1428. PubMed ID: 29808355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crack propagation in cortical bone is affected by the characteristics of the cement line: a parameter study using an XFEM interface damage model.
    Gustafsson A; Wallin M; Khayyeri H; Isaksson H
    Biomech Model Mechanobiol; 2019 Aug; 18(4):1247-1261. PubMed ID: 30963356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrated experimental-computational framework to assess the influence of microstructure and material properties on fracture toughness in clinical specimens of human femoral cortical bone.
    Demirtas A; Taylor EA; Gludovatz B; Ritchie RO; Donnelly E; Ural A
    J Mech Behav Biomed Mater; 2023 Sep; 145():106034. PubMed ID: 37494816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element analysis on multi-toughening mechanism of microstructure of osteon.
    Yin D; Chen B; Lin S
    J Mech Behav Biomed Mater; 2021 May; 117():104408. PubMed ID: 33657473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the fracture behavior of cortical bone microstructure: The effects of morphology and material characteristics of bone structural components.
    Allahyari P; Silani M; Yaghoubi V; Milovanovic P; Schmidt FN; Busse B; Qwamizadeh M
    J Mech Behav Biomed Mater; 2023 Jan; 137():105530. PubMed ID: 36334581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropic mode-dependent damage of cortical bone using the extended finite element method (XFEM).
    Feerick EM; Liu XC; McGarry P
    J Mech Behav Biomed Mater; 2013 Apr; 20():77-89. PubMed ID: 23455165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of microstructure and microcrack growth in cortical bone: a finite element study.
    Mischinski S; Ural A
    Comput Methods Biomech Biomed Engin; 2013; 16(1):81-94. PubMed ID: 21970670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of microstructure on crack propagation in cortical bone at the mesoscale.
    Gustafsson A; Wallin M; Isaksson H
    J Biomech; 2020 Nov; 112():110020. PubMed ID: 32980752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-related properties at the microscale affect crack propagation in cortical bone.
    Gustafsson A; Wallin M; Isaksson H
    J Biomech; 2019 Oct; 95():109326. PubMed ID: 31526587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational homogenisation based extraction of transverse tensile cohesive responses of cortical bone tissue.
    Xing W; Miller T; Wildy S
    Biomech Model Mechanobiol; 2022 Feb; 21(1):147-161. PubMed ID: 34647217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cohesive finite element modeling of age-related toughness loss in human cortical bone.
    Ural A; Vashishth D
    J Biomech; 2006; 39(16):2974-82. PubMed ID: 16375909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of intracortical porosity on fracture toughness in aging human bone: a microCT-based cohesive finite element study.
    Ural A; Vashishth D
    J Biomech Eng; 2007 Oct; 129(5):625-31. PubMed ID: 17887887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anisotropy of age-related toughness loss in human cortical bone: a finite element study.
    Ural A; Vashishth D
    J Biomech; 2007; 40(7):1606-14. PubMed ID: 17054962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of XFEM to assess the influence of intra-cortical porosity on crack propagation.
    Rodriguez-Florez N; Carriero A; Shefelbine SJ
    Comput Methods Biomech Biomed Engin; 2017 Mar; 20(4):385-392. PubMed ID: 27658495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of micro fracture in human Haversian cortical bone under compression.
    Jonvaux J; Hoc T; Budyn E
    Int J Numer Method Biomed Eng; 2012 Sep; 28(9):974-98. PubMed ID: 22941926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analyzing the effect of hydration on the wedge indentation fracture behavior of cortical bone.
    Hoffseth K; Randall C; Chandrasekar S; Hansma P; Yang HTY
    J Mech Behav Biomed Mater; 2017 May; 69():318-326. PubMed ID: 28153758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.