These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
333 related articles for article (PubMed ID: 27287325)
1. Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa. Bosire EM; Blank LM; Rosenbaum MA Appl Environ Microbiol; 2016 Aug; 82(16):5026-38. PubMed ID: 27287325 [TBL] [Abstract][Full Text] [Related]
2. Boosting mediated electron transfer in bioelectrochemical systems with tailored defined microbial cocultures. Schmitz S; Rosenbaum MA Biotechnol Bioeng; 2018 Sep; 115(9):2183-2193. PubMed ID: 29777590 [TBL] [Abstract][Full Text] [Related]
3. Electrochemical Potential Influences Phenazine Production, Electron Transfer and Consequently Electric Current Generation by Bosire EM; Rosenbaum MA Front Microbiol; 2017; 8():892. PubMed ID: 28572797 [No Abstract] [Full Text] [Related]
4. [Isolation and characterization of electrochemical active bacterial Pseudomonas aeruginosa strain RE7]. Luo HP; Liu GL; Zhang RD; Cao LX Huan Jing Ke Xue; 2009 Jul; 30(7):2118-23. PubMed ID: 19775018 [TBL] [Abstract][Full Text] [Related]
5. Interdependency of Respiratory Metabolism and Phenazine-Associated Physiology in Pseudomonas aeruginosa PA14. Jo J; Price-Whelan A; Cornell WC; Dietrich LEP J Bacteriol; 2020 Jan; 202(4):. PubMed ID: 31767778 [TBL] [Abstract][Full Text] [Related]
6. Biofilm promoted current generation of Pseudomonas aeruginosa microbial fuel cell via improving the interfacial redox reaction of phenazines. Qiao YJ; Qiao Y; Zou L; Wu XS; Liu JH Bioelectrochemistry; 2017 Oct; 117():34-39. PubMed ID: 28575838 [TBL] [Abstract][Full Text] [Related]
7. Screening of natural phenazine producers for electroactivity in bioelectrochemical systems. Franco A; Elbahnasy M; Rosenbaum MA Microb Biotechnol; 2023 Mar; 16(3):579-594. PubMed ID: 36571174 [TBL] [Abstract][Full Text] [Related]
8. Controlling the Production of Schmitz S; Rosenbaum MA ACS Chem Biol; 2020 Dec; 15(12):3244-3252. PubMed ID: 33258592 [TBL] [Abstract][Full Text] [Related]
9. Engineering mediator-based electroactivity in the obligate aerobic bacterium Pseudomonas putida KT2440. Schmitz S; Nies S; Wierckx N; Blank LM; Rosenbaum MA Front Microbiol; 2015; 6():284. PubMed ID: 25914687 [TBL] [Abstract][Full Text] [Related]
10. Spontaneous quorum sensing mutation modulates electroactivity of Pseudomonas aeruginosa PA14. Berger C; Rosenbaum MA Bioelectrochemistry; 2017 Oct; 117():1-8. PubMed ID: 28494227 [TBL] [Abstract][Full Text] [Related]
11. Engineering PQS biosynthesis pathway for enhancement of bioelectricity production in pseudomonas aeruginosa microbial fuel cells. Wang VB; Chua SL; Cao B; Seviour T; Nesatyy VJ; Marsili E; Kjelleberg S; Givskov M; Tolker-Nielsen T; Song H; Loo JS; Yang L PLoS One; 2013; 8(5):e63129. PubMed ID: 23700414 [TBL] [Abstract][Full Text] [Related]
12. [Survival elongation of Pseudomonas aeruginosa improves power output of microbial fuel cells]. You T; Liu J; Liang R; Liu J Sheng Wu Gong Cheng Xue Bao; 2017 Apr; 33(4):601-608. PubMed ID: 28920393 [TBL] [Abstract][Full Text] [Related]
13. Microbial phenazine production enhances electron transfer in biofuel cells. Rabaey K; Boon N; Höfte M; Verstraete W Environ Sci Technol; 2005 May; 39(9):3401-8. PubMed ID: 15926596 [TBL] [Abstract][Full Text] [Related]
14. Real-Time Electrochemical Detection of Pseudomonas aeruginosa Phenazine Metabolites Using Transparent Carbon Ultramicroelectrode Arrays. Simoska O; Sans M; Fitzpatrick MD; Crittenden CM; Eberlin LS; Shear JB; Stevenson KJ ACS Sens; 2019 Jan; 4(1):170-179. PubMed ID: 30525472 [TBL] [Abstract][Full Text] [Related]
15. The direct electrocatalysis of phenazine-1-carboxylic acid excreted by Pseudomonas alcaliphila under alkaline condition in microbial fuel cells. Zhang T; Zhang L; Su W; Gao P; Li D; He X; Zhang Y Bioresour Technol; 2011 Jul; 102(14):7099-102. PubMed ID: 21596560 [TBL] [Abstract][Full Text] [Related]
16. Enhancing the performance of Escherichia coli-inoculated microbial fuel cells by introduction of the phenazine-1-carboxylic acid pathway. Feng J; Qian Y; Wang Z; Wang X; Xu S; Chen K; Ouyang P J Biotechnol; 2018 Jun; 275():1-6. PubMed ID: 29581032 [TBL] [Abstract][Full Text] [Related]
17. Biotechnological potential of a rhizosphere Pseudomonas aeruginosa strain producing phenazine-1-carboxylic acid and phenazine-1-carboxamide. Zhou L; Jiang HX; Sun S; Yang DD; Jin KM; Zhang W; He YW World J Microbiol Biotechnol; 2016 Mar; 32(3):50. PubMed ID: 26873561 [TBL] [Abstract][Full Text] [Related]
18. Boosting Heterologous Phenazine Production in Askitosari TD; Boto ST; Blank LM; Rosenbaum MA Front Microbiol; 2019; 10():1990. PubMed ID: 31555229 [TBL] [Abstract][Full Text] [Related]
19. [Positive regulation in expression of the phenazine-producing operon phz2 mediated by pip in Pseudomonas aeruginosa PAO1]. Zhang Y; Cui Q; Zhao Z; Ming Y; Chi X; Feng Z; Cheng S; Xie W; Ge Y Wei Sheng Wu Xue Bao; 2013 Feb; 53(2):127-35. PubMed ID: 23627105 [TBL] [Abstract][Full Text] [Related]
20. Metabolite transfer with the fermentation product 2,3-butanediol enhances virulence by Pseudomonas aeruginosa. Venkataraman A; Rosenbaum MA; Werner JJ; Winans SC; Angenent LT ISME J; 2014 Jun; 8(6):1210-20. PubMed ID: 24401856 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]