These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
333 related articles for article (PubMed ID: 27287325)
21. Pseudomonas aeruginosa PumA acts on an endogenous phenazine to promote self-resistance. Sporer AJ; Beierschmitt C; Bendebury A; Zink KE; Price-Whelan A; Buzzeo MC; Sanchez LM; Dietrich LEP Microbiology (Reading); 2018 May; 164(5):790-800. PubMed ID: 29629858 [TBL] [Abstract][Full Text] [Related]
22. Use of Pseudomonas species producing phenazine-based metabolites in the anodes of microbial fuel cells to improve electricity generation. Pham TH; Boon N; De Maeyer K; Höfte M; Rabaey K; Verstraete W Appl Microbiol Biotechnol; 2008 Oct; 80(6):985-93. PubMed ID: 18688612 [TBL] [Abstract][Full Text] [Related]
23. The Pseudomonas aeruginosa efflux pump MexGHI-OpmD transports a natural phenazine that controls gene expression and biofilm development. Sakhtah H; Koyama L; Zhang Y; Morales DK; Fields BL; Price-Whelan A; Hogan DA; Shepard K; Dietrich LE Proc Natl Acad Sci U S A; 2016 Jun; 113(25):E3538-47. PubMed ID: 27274079 [TBL] [Abstract][Full Text] [Related]
24. Enhancing extracellular electron transfer between Pseudomonas aeruginosa PAO1 and light driven semiconducting birnessite. Ren G; Sun Y; Ding Y; Lu A; Li Y; Wang C; Ding H Bioelectrochemistry; 2018 Oct; 123():233-240. PubMed ID: 29894900 [TBL] [Abstract][Full Text] [Related]
25. Isolation of phenazine 1,6-di-carboxylic acid from Pseudomonas aeruginosa strain HRW.1-S3 and its role in biofilm-mediated crude oil degradation and cytotoxicity against bacterial and cancer cells. Dasgupta D; Kumar A; Mukhopadhyay B; Sengupta TK Appl Microbiol Biotechnol; 2015 Oct; 99(20):8653-65. PubMed ID: 26051670 [TBL] [Abstract][Full Text] [Related]
26. Exploring phenazine electron transfer interaction with elements of the respiratory pathways of Pseudomonas putida and Pseudomonas aeruginosa. Franco A; Chukwubuikem A; Meiners C; Rosenbaum MA Bioelectrochemistry; 2024 Jun; 157():108636. PubMed ID: 38181591 [TBL] [Abstract][Full Text] [Related]
27. Real-time monitoring of phenazines excretion in Pseudomonas aeruginosa microbial fuel cell anode using cavity microelectrodes. Qiao Y; Qiao YJ; Zou L; Ma CX; Liu JH Bioresour Technol; 2015 Dec; 198():1-6. PubMed ID: 26360598 [TBL] [Abstract][Full Text] [Related]
28. The Pyruvate and α-Ketoglutarate Dehydrogenase Complexes of Glasser NR; Wang BX; Hoy JA; Newman DK J Biol Chem; 2017 Mar; 292(13):5593-5607. PubMed ID: 28174304 [TBL] [Abstract][Full Text] [Related]
29. Use of non-native phenazines to improve the performance of Pseudomonas aeruginosa MTCC 2474 catalysed fuel cells. Jayapriya J; Ramamurthy V Bioresour Technol; 2012 Nov; 124():23-8. PubMed ID: 22985848 [TBL] [Abstract][Full Text] [Related]
30. Electrobiochemical skills of Pseudomonas aeruginosa species that produce pyocyanin or pyoverdine for glycerol oxidation in a microbial fuel cell. Zani ACB; Almeida ÉJR; Furlan JPR; Pedrino M; Guazzaroni ME; Stehling EG; Andrade AR; Reginatto V Chemosphere; 2023 Sep; 335():139073. PubMed ID: 37263512 [TBL] [Abstract][Full Text] [Related]
31. Role of phenazine-enzyme physiology for current generation in a bioelectrochemical system. Chukwubuikem A; Berger C; Mady A; Rosenbaum MA Microb Biotechnol; 2021 Jul; 14(4):1613-1626. PubMed ID: 34000093 [TBL] [Abstract][Full Text] [Related]
32. Phenazine redox cycling enhances anaerobic survival in Pseudomonas aeruginosa by facilitating generation of ATP and a proton-motive force. Glasser NR; Kern SE; Newman DK Mol Microbiol; 2014 Apr; 92(2):399-412. PubMed ID: 24612454 [TBL] [Abstract][Full Text] [Related]
33. Electrochemical monitoring of the impact of polymicrobial infections on Pseudomonas aeruginosa and growth dependent medium. Simoska O; Sans M; Eberlin LS; Shear JB; Stevenson KJ Biosens Bioelectron; 2019 Oct; 142():111538. PubMed ID: 31376710 [TBL] [Abstract][Full Text] [Related]
34. A 96-well high-throughput, rapid-screening platform of extracellular electron transfer in microbial fuel cells. Tahernia M; Mohammadifar M; Gao Y; Panmanee W; Hassett DJ; Choi S Biosens Bioelectron; 2020 Aug; 162():112259. PubMed ID: 32452395 [TBL] [Abstract][Full Text] [Related]
35. An UV-vis spectroelectrochemical approach for rapid detection of phenazines and exploration of their redox characteristics. Chen W; Liu XY; Qian C; Song XN; Li WW; Yu HQ Biosens Bioelectron; 2015 Feb; 64():25-9. PubMed ID: 25173735 [TBL] [Abstract][Full Text] [Related]
36. Bioelectricity enhancement via overexpression of quorum sensing system in Pseudomonas aeruginosa-inoculated microbial fuel cells. Yong YC; Yu YY; Li CM; Zhong JJ; Song H Biosens Bioelectron; 2011 Dec; 30(1):87-92. PubMed ID: 21945141 [TBL] [Abstract][Full Text] [Related]
37. Pattern of phenazine pigment production by a strain of Pseudomonas aeruginosa. Kanner D; Gerber NN; Bartha R J Bacteriol; 1978 May; 134(2):690-2. PubMed ID: 96094 [TBL] [Abstract][Full Text] [Related]
38. Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer. Pham TH; Boon N; Aelterman P; Clauwaert P; De Schamphelaire L; Vanhaecke L; De Maeyer K; Höfte M; Verstraete W; Rabaey K Appl Microbiol Biotechnol; 2008 Jan; 77(5):1119-29. PubMed ID: 17968538 [TBL] [Abstract][Full Text] [Related]
39. Enhanced bioelectricity generation by improving pyocyanin production and membrane permeability through sophorolipid addition in Pseudomonas aeruginosa-inoculated microbial fuel cells. Shen HB; Yong XY; Chen YL; Liao ZH; Si RW; Zhou J; Wang SY; Yong YC; OuYang PK; Zheng T Bioresour Technol; 2014 Sep; 167():490-4. PubMed ID: 25011080 [TBL] [Abstract][Full Text] [Related]
40. Pyocyanin and 1-Hydroxyphenazine Promote Anaerobic Killing of Pseudomonas aeruginosa via Single-Electron Transfer with Ferrous Iron. Kang J; Cho YH; Lee Y Microbiol Spectr; 2022 Dec; 10(6):e0231222. PubMed ID: 36321913 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]