These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 27287489)

  • 1. Improving of local ozone forecasting by integrated models.
    Gradišar D; Grašič B; Božnar MZ; Mlakar P; Kocijan J
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18439-50. PubMed ID: 27287489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unveiling tropospheric ozone by the traditional atmospheric model and machine learning, and their comparison:A case study in hangzhou, China.
    Feng R; Zheng HJ; Zhang AR; Huang C; Gao H; Ma YC
    Environ Pollut; 2019 Sep; 252(Pt A):366-378. PubMed ID: 31158665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of tropospheric ozone concentration using artificial neural networks at traffic and background urban locations in Novi Sad, Serbia.
    Malinović-Milićević S; Vyklyuk Y; Stanojević G; Radovanović MM; Doljak D; Ćurčić NB
    Environ Monit Assess; 2021 Jan; 193(2):84. PubMed ID: 33495931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Application of artificial neural networks on the prediction of surface ozone concentrations].
    Shen LL; Wang YX; Duan L
    Huan Jing Ke Xue; 2011 Aug; 32(8):2231-5. PubMed ID: 22619942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using a deep convolutional neural network to predict 2017 ozone concentrations, 24 hours in advance.
    Sayeed A; Choi Y; Eslami E; Lops Y; Roy A; Jung J
    Neural Netw; 2020 Jan; 121():396-408. PubMed ID: 31604202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the Mesoscale Meteorological Model (MM5)-Community Multi-Scale Air Quality Model (CMAQ) performance in hindcast and forecast of ground-level ozone.
    Nghiem le H; Kim Oanh NT
    J Air Waste Manag Assoc; 2008 Oct; 58(10):1341-50. PubMed ID: 18939781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of maximum daily ozone level using combined neural network and statistical characteristics.
    Wang W; Lu W; Wang X; Leung AY
    Environ Int; 2003 Aug; 29(5):555-62. PubMed ID: 12742398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human-model hybrid Korean air quality forecasting system.
    Chang LS; Cho A; Park H; Nam K; Kim D; Hong JH; Song CK
    J Air Waste Manag Assoc; 2016 Sep; 66(9):896-911. PubMed ID: 27450767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial neural network-derived trends in daily maximum surface ozone concentrations.
    Gardner M; Dorling S
    J Air Waste Manag Assoc; 2001 Aug; 51(8):1202-10. PubMed ID: 11518294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine-Learning-Based Near-Surface Ozone Forecasting Model with Planetary Boundary Layer Information.
    Ko K; Cho S; Rao RR
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear data assimilation for the regional modeling of maximum ozone values.
    Božnar MZ; Grašič B; Mlakar P; Gradišar D; Kocijan J
    Environ Sci Pollut Res Int; 2017 Nov; 24(31):24666-24680. PubMed ID: 28913722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ground-level ozone simulation using ensemble WRF/Chem predictions over the Southeast United States.
    Wang P; Wang P; Chen K; Du J; Zhang H
    Chemosphere; 2022 Jan; 287(Pt 4):132428. PubMed ID: 34606899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forecasting of daily total atmospheric ozone in Isfahan.
    Yazdanpanah H; Karimi M; Hejazizadeh Z
    Environ Monit Assess; 2009 Oct; 157(1-4):235-41. PubMed ID: 18843548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated air quality forecast system for a metropolitan area.
    Carnevale C; Finzi G; Pisoni E; Singh V; Volta M
    J Environ Monit; 2011 Dec; 13(12):3437-47. PubMed ID: 22037681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulating the meteorology and PM
    Hyde P; Mahalov A; Li J
    J Air Waste Manag Assoc; 2018 Mar; 68(3):177-195. PubMed ID: 28738173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of ozone concentrations in Oporto city with statistical approaches.
    Sousa SI; Martins FG; Pereira MC; Alvim-Ferraz MC
    Chemosphere; 2006 Aug; 64(7):1141-9. PubMed ID: 16405949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forecasting PM10 in Algiers: efficacy of multilayer perceptron networks.
    Abderrahim H; Chellali MR; Hamou A
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1634-41. PubMed ID: 26381787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regional Prediction of Ozone and Fine Particulate Matter Using Diffusion Convolutional Recurrent Neural Network.
    Wang D; Wang HW; Lu KF; Peng ZR; Zhao J
    Int J Environ Res Public Health; 2022 Mar; 19(7):. PubMed ID: 35409671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forecasting of ozone episode days by cost-sensitive neural network methods.
    Tsai CH; Chang LC; Chiang HC
    Sci Total Environ; 2009 Mar; 407(6):2124-35. PubMed ID: 19157520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic development of an artificial neural network model for real-time prediction of ground-level ozone in Edmonton, Alberta, Canada.
    Wirtz DS; El-Din MG; El-Din AG; Idriss A
    J Air Waste Manag Assoc; 2005 Dec; 55(12):1847-57. PubMed ID: 16408689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.