BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 27287719)

  • 1. Pexmetinib: A Novel Dual Inhibitor of Tie2 and p38 MAPK with Efficacy in Preclinical Models of Myelodysplastic Syndromes and Acute Myeloid Leukemia.
    Bachegowda L; Morrone K; Winski SL; Mantzaris I; Bartenstein M; Ramachandra N; Giricz O; Sukrithan V; Nwankwo G; Shahnaz S; Bhagat T; Bhattacharyya S; Assal A; Shastri A; Gordon-Mitchell S; Pellagatti A; Boultwood J; Schinke C; Yu Y; Guha C; Rizzi J; Garrus J; Brown S; Wollenberg L; Hogeland G; Wright D; Munson M; Rodriguez M; Gross S; Chantry D; Zou Y; Platanias L; Burgess LE; Pradhan K; Steidl U; Verma A
    Cancer Res; 2016 Aug; 76(16):4841-4849. PubMed ID: 27287719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A phase I study of oral ARRY-614, a p38 MAPK/Tie2 dual inhibitor, in patients with low or intermediate-1 risk myelodysplastic syndromes.
    Garcia-Manero G; Khoury HJ; Jabbour E; Lancet J; Winski SL; Cable L; Rush S; Maloney L; Hogeland G; Ptaszynski M; Calvo MC; Bohannan Z; List A; Kantarjian H; Komrokji R
    Clin Cancer Res; 2015 Mar; 21(5):985-94. PubMed ID: 25480830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic disulfide-triggered apoptosis and erythroid differentiation in myelodysplastic syndrome and acute myeloid leukemia cell lines.
    Hu XM; Yuan B; Tanaka S; Song MM; Onda K; Tohyama K; Zhou AX; Toyoda H; Hirano T
    Hematology; 2014 Sep; 19(6):352-60. PubMed ID: 24192507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A systematic modeling study on the pathogenic role of p38 MAPK activation in myelodysplastic syndromes.
    Peng H; Wen J; Zhang L; Li H; Chang CC; Zu Y; Zhou X
    Mol Biosyst; 2012 Apr; 8(4):1366-74. PubMed ID: 22327869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. p38 MAPK in MDS.
    Gañán-Gómez I; Bohannan ZS; Garcia-Manero G
    Aging (Albany NY); 2015 Jun; 7(6):346-7. PubMed ID: 26081220
    [No Abstract]   [Full Text] [Related]  

  • 6. Inhibition of p38alpha MAPK disrupts the pathological loop of proinflammatory factor production in the myelodysplastic syndrome bone marrow microenvironment.
    Navas T; Zhou L; Estes M; Haghnazari E; Nguyen AN; Mo Y; Pahanish P; Mohindru M; Cao T; Higgins LS; Platanias LC; List A; Verma A; Bhagat T; Gajavelli S; Kambhampati S
    Leuk Lymphoma; 2008 Oct; 49(10):1963-75. PubMed ID: 18949619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of angiogenesis in the bone marrow of myelodysplastic syndromes transforming to overt leukaemia.
    Keith T; Araki Y; Ohyagi M; Hasegawa M; Yamamoto K; Kurata M; Nakagawa Y; Suzuki K; Kitagawa M
    Br J Haematol; 2007 May; 137(3):206-15. PubMed ID: 17408459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of overactivated p38 MAPK can restore hematopoiesis in myelodysplastic syndrome progenitors.
    Navas TA; Mohindru M; Estes M; Ma JY; Sokol L; Pahanish P; Parmar S; Haghnazari E; Zhou L; Collins R; Kerr I; Nguyen AN; Xu Y; Platanias LC; List AA; Higgins LS; Verma A
    Blood; 2006 Dec; 108(13):4170-7. PubMed ID: 16940419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of p38 mitogen-activated protein kinase in serum-induced leukemia inhibitory factor secretion by bone marrow stromal cells from pediatric myelodysplastic syndromes.
    da Costa SV; Roela RA; Junqueira MS; Arantes C; Brentani MM
    Leuk Res; 2010 Apr; 34(4):507-12. PubMed ID: 19913910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Focal Adhesion Kinase as a Potential Target in AML and MDS.
    Carter BZ; Mak PY; Wang X; Yang H; Garcia-Manero G; Mak DH; Mu H; Ruvolo VR; Qiu Y; Coombes K; Zhang N; Ragon B; Weaver DT; Pachter JA; Kornblau S; Andreeff M
    Mol Cancer Ther; 2017 Jun; 16(6):1133-1144. PubMed ID: 28270436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IL8-CXCR2 pathway inhibition as a therapeutic strategy against MDS and AML stem cells.
    Schinke C; Giricz O; Li W; Shastri A; Gordon S; Barreyro L; Bhagat T; Bhattacharyya S; Ramachandra N; Bartenstein M; Pellagatti A; Boultwood J; Wickrema A; Yu Y; Will B; Wei S; Steidl U; Verma A
    Blood; 2015 May; 125(20):3144-52. PubMed ID: 25810490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HO-1 promotes resistance to an EZH2 inhibitor through the pRB-E2F pathway: correlation with the progression of myelodysplastic syndrome into acute myeloid leukemia.
    He Z; Zhang S; Ma D; Fang Q; Yang L; Shen S; Chen Y; Ren L; Wang J
    J Transl Med; 2019 Nov; 17(1):366. PubMed ID: 31711520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signal transduction inhibitors in treatment of myelodysplastic syndromes.
    Bachegowda L; Gligich O; Mantzaris I; Schinke C; Wyville D; Carrillo T; Braunschweig I; Steidl U; Verma A
    J Hematol Oncol; 2013 Jul; 6():50. PubMed ID: 23841999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apoptosis, bcl-2 expression and p53 accumulation in myelodysplastic syndrome, myelodysplastic-syndrome-derived acute myelogenous leukemia and de novo acute myelogenous leukemia.
    Kurotaki H; Tsushima Y; Nagai K; Yagihashi S
    Acta Haematol; 2000; 102(3):115-23. PubMed ID: 10692673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High Expression of Human Homologue of Murine Double Minute 4 and the Short Splicing Variant, HDM4-S, in Bone Marrow in Patients With Acute Myeloid Leukemia or Myelodysplastic Syndrome.
    Han X; Medeiros LJ; Zhang YH; You MJ; Andreeff M; Konopleva M; Bueso-Ramos CE
    Clin Lymphoma Myeloma Leuk; 2016 Aug; 16 Suppl():S30-8. PubMed ID: 27155969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the p38 mitogen-activated protein kinase pathway in cytokine-mediated hematopoietic suppression in myelodysplastic syndromes.
    Katsoulidis E; Li Y; Yoon P; Sassano A; Altman J; Kannan-Thulasiraman P; Balasubramanian L; Parmar S; Varga J; Tallman MS; Verma A; Platanias LC
    Cancer Res; 2005 Oct; 65(19):9029-37. PubMed ID: 16204077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antisense STAT3 inhibitor decreases viability of myelodysplastic and leukemic stem cells.
    Shastri A; Choudhary G; Teixeira M; Gordon-Mitchell S; Ramachandra N; Bernard L; Bhattacharyya S; Lopez R; Pradhan K; Giricz O; Ravipati G; Wong LF; Cole S; Bhagat TD; Feld J; Dhar Y; Bartenstein M; Thiruthuvanathan VJ; Wickrema A; Ye BH; Frank DA; Pellagatti A; Boultwood J; Zhou T; Kim Y; MacLeod AR; Epling-Burnette PK; Ye M; McCoon P; Woessner R; Steidl U; Will B; Verma A
    J Clin Invest; 2018 Dec; 128(12):5479-5488. PubMed ID: 30252677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunohistochemical detection of p53, mdm2, waf1/p21, and Ki67 proteins in bone marrow biopsies in myelodysplastic syndroms, acute myelogenous leukaemias and chronic myeloproliferative disorders.
    Kanavaros P; Stefanaki K; Rontogianni D; Darivianaki K; Vlychou M; Papadaki E; Eliopoulos G; Bakiri M; Matsouka C; Kakolyris S; Georgoulias V
    Clin Exp Pathol; 1999; 47(5):231-8. PubMed ID: 10598372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of CDKN1C in the bone marrow of patients with myelodysplastic syndrome and secondary acute myeloid leukemia is associated with poor survival after conventional chemotherapy.
    Radujkovic A; Dietrich S; Andrulis M; Benner A; Longerich T; Pellagatti A; Nanda K; Giese T; Germing U; Baldus S; Boultwood J; Ho AD; Dreger P; Luft T
    Int J Cancer; 2016 Sep; 139(6):1402-13. PubMed ID: 27170453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. COMP-angiopoietin 1 increases proliferation, differentiation, and migration of stem-like cells through Tie-2-mediated activation of p38 MAPK and PI3K/Akt signal transduction pathways.
    Kook SH; Lim SS; Cho ES; Lee YH; Han SK; Lee KY; Kwon J; Hwang JW; Bae CH; Seo YK; Lee JC
    Biochem Biophys Res Commun; 2014 Dec; 455(3-4):371-7. PubMed ID: 25446117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.