BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 27288013)

  • 1. MAP17 Is a Necessary Activator of Renal Na+/Glucose Cotransporter SGLT2.
    Coady MJ; El Tarazi A; Santer R; Bissonnette P; Sasseville LJ; Calado J; Lussier Y; Dumayne C; Bichet DG; Lapointe JY
    J Am Soc Nephrol; 2017 Jan; 28(1):85-93. PubMed ID: 27288013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Na
    Calado J; Santos AR; Aires I; Lebre F; Nolasco F; Rueff J; Ramalho J
    FEBS Lett; 2018 Oct; 592(19):3317-3326. PubMed ID: 30156268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel missense mutation in SLC5A2 encoding SGLT2 underlies autosomal-recessive renal glucosuria and aminoaciduria.
    Magen D; Sprecher E; Zelikovic I; Skorecki K
    Kidney Int; 2005 Jan; 67(1):34-41. PubMed ID: 15610225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the transport activity of SGLT2/MAP17, the renal low-affinity Na
    Coady MJ; Wallendorff B; Lapointe JY
    Am J Physiol Renal Physiol; 2017 Aug; 313(2):F467-F474. PubMed ID: 28592437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rat kidney MAP17 induces cotransport of Na-mannose and Na-glucose in Xenopus laevis oocytes.
    Blasco T; Aramayona JJ; Alcalde AI; Catalán J; Sarasa M; Sorribas V
    Am J Physiol Renal Physiol; 2003 Oct; 285(4):F799-810. PubMed ID: 12812916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of MAP17 with the NaPi-IIa/PDZK1 protein complex in renal proximal tubular cells.
    Pribanic S; Gisler SM; Bacic D; Madjdpour C; Hernando N; Sorribas V; Gantenbein A; Biber J; Murer H
    Am J Physiol Renal Physiol; 2003 Oct; 285(4):F784-91. PubMed ID: 12837682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autosomal recessive renal glucosuria attributable to a mutation in the sodium glucose cotransporter (SGLT2).
    van den Heuvel LP; Assink K; Willemsen M; Monnens L
    Hum Genet; 2002 Dec; 111(6):544-7. PubMed ID: 12436245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decreased expression and function of sodium-glucose co-transporter 2 from a novel C-terminal mutation: a case report.
    Yu L; Xu Q; Hou P; Zhang H
    BMC Nephrol; 2016 Mar; 17():31. PubMed ID: 27000029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose.
    Kanai Y; Lee WS; You G; Brown D; Hediger MA
    J Clin Invest; 1994 Jan; 93(1):397-404. PubMed ID: 8282810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of MAP17 with NHERF3/4 induces translocation of the renal Na/Pi IIa transporter to the trans-Golgi.
    Lanaspa MA; Giral H; Breusegem SY; Halaihel N; Baile G; Catalán J; Carrodeguas JA; Barry NP; Levi M; Sorribas V
    Am J Physiol Renal Physiol; 2007 Jan; 292(1):F230-42. PubMed ID: 16926447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Familial renal glucosuria and SGLT2: from a mendelian trait to a therapeutic target.
    Santer R; Calado J
    Clin J Am Soc Nephrol; 2010 Jan; 5(1):133-41. PubMed ID: 19965550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2.
    Ghezzi C; Loo DDF; Wright EM
    Diabetologia; 2018 Oct; 61(10):2087-2097. PubMed ID: 30132032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium glucose cotransporter 2 inhibition in the diabetic kidney: an update.
    Novikov A; Vallon V
    Curr Opin Nephrol Hypertens; 2016 Jan; 25(1):50-8. PubMed ID: 26575393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport and inhibition mechanism of the human SGLT2-MAP17 glucose transporter.
    Hiraizumi M; Akashi T; Murasaki K; Kishida H; Kumanomidou T; Torimoto N; Nureki O; Miyaguchi I
    Nat Struct Mol Biol; 2024 Jan; 31(1):159-169. PubMed ID: 38057552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SGLT2 mediates glucose reabsorption in the early proximal tubule.
    Vallon V; Platt KA; Cunard R; Schroth J; Whaley J; Thomson SC; Koepsell H; Rieg T
    J Am Soc Nephrol; 2011 Jan; 22(1):104-12. PubMed ID: 20616166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renal, metabolic and cardiovascular considerations of SGLT2 inhibition.
    DeFronzo RA; Norton L; Abdul-Ghani M
    Nat Rev Nephrol; 2017 Jan; 13(1):11-26. PubMed ID: 27941935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the human Na+-dependent glucose cotransporter hSGLT2.
    Ghezzi C; Wright EM
    Am J Physiol Cell Physiol; 2012 Aug; 303(3):C348-54. PubMed ID: 22673616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium/glucose cotransporter 2 inhibitors and prevention of diabetic nephropathy: targeting the renal tubule in diabetes.
    De Nicola L; Gabbai FB; Liberti ME; Sagliocca A; Conte G; Minutolo R
    Am J Kidney Dis; 2014 Jul; 64(1):16-24. PubMed ID: 24673844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose control by the kidney: an emerging target in diabetes.
    Marsenic O
    Am J Kidney Dis; 2009 May; 53(5):875-83. PubMed ID: 19324482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Renal glucosuria].
    Rohfleisch A; Nseir G; Chehade H; Noverraz MG; Venetz JP; Barbey F
    Rev Med Suisse; 2013 Mar; 9(378):636-40. PubMed ID: 23547366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.