BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 27288029)

  • 1. Structure and function of histone methylation-binding proteins in plants.
    Liu Y; Min J
    Biochem J; 2016 Jun; 473(12):1663-80. PubMed ID: 27288029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SET domain proteins in plant development.
    Thorstensen T; Grini PE; Aalen RB
    Biochim Biophys Acta; 2011 Aug; 1809(8):407-20. PubMed ID: 21664308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and mechanism of plant histone mark readers.
    Liu R; Li X; Chen W; Du J
    Sci China Life Sci; 2018 Feb; 61(2):170-177. PubMed ID: 29019143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinctive core histone post-translational modification patterns in Arabidopsis thaliana.
    Zhang K; Sridhar VV; Zhu J; Kapoor A; Zhu JK
    PLoS One; 2007 Nov; 2(11):e1210. PubMed ID: 18030344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histone modifications in transcriptional activation during plant development.
    Berr A; Shafiq S; Shen WH
    Biochim Biophys Acta; 2011 Oct; 1809(10):567-76. PubMed ID: 21777708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation of histone H3 in plants--a dynamic affair.
    Houben A; Demidov D; Caperta AD; Karimi R; Agueci F; Vlasenko L
    Biochim Biophys Acta; 2007; 1769(5-6):308-15. PubMed ID: 17320987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of histone modifications in plant abiotic stress responses.
    Yuan L; Liu X; Luo M; Yang S; Wu K
    J Integr Plant Biol; 2013 Oct; 55(10):892-901. PubMed ID: 24034164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mass spectrometry analysis of Arabidopsis histone H3 reveals distinct combinations of post-translational modifications.
    Johnson L; Mollah S; Garcia BA; Muratore TL; Shabanowitz J; Hunt DF; Jacobsen SE
    Nucleic Acids Res; 2004; 32(22):6511-8. PubMed ID: 15598823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of post-translational modifications of histone H2B-variants isolated from Arabidopsis thaliana.
    Bergmüller E; Gehrig PM; Gruissem W
    J Proteome Res; 2007 Sep; 6(9):3655-68. PubMed ID: 17691833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histone H1 Variants in Arabidopsis Are Subject to Numerous Post-Translational Modifications, Both Conserved and Previously Unknown in Histones, Suggesting Complex Functions of H1 in Plants.
    Kotliński M; Rutowicz K; Kniżewski Ł; Palusiński A; Olędzki J; Fogtman A; Rubel T; Koblowska M; Dadlez M; Ginalski K; Jerzmanowski A
    PLoS One; 2016; 11(1):e0147908. PubMed ID: 26820416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. H3K23me1 is an evolutionarily conserved histone modification associated with CG DNA methylation in Arabidopsis.
    Trejo-Arellano MS; Mahrez W; Nakamura M; Moreno-Romero J; Nanni P; Köhler C; Hennig L
    Plant J; 2017 Apr; 90(2):293-303. PubMed ID: 28182313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SWI/SNF chromatin remodeling and linker histones in plants.
    Jerzmanowski A
    Biochim Biophys Acta; 2007; 1769(5-6):330-45. PubMed ID: 17292979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An optimised chromatin immunoprecipitation (ChIP) method for starchy leaves of Nicotiana benthamiana to study histone modifications of an allotetraploid plant.
    Ranawaka B; Tanurdzic M; Waterhouse P; Naim F
    Mol Biol Rep; 2020 Dec; 47(12):9499-9509. PubMed ID: 33237398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering chromatin states: chemical and synthetic biology approaches to investigate histone modification function.
    Pick H; Kilic S; Fierz B
    Biochim Biophys Acta; 2014 Aug; 1839(8):644-56. PubMed ID: 24768924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological role and mechanism of chromatin readers in plants.
    Scheid R; Chen J; Zhong X
    Curr Opin Plant Biol; 2021 Jun; 61():102008. PubMed ID: 33581373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of dynamic and reversible histone acetylation in plant development and polyploidy.
    Chen ZJ; Tian L
    Biochim Biophys Acta; 2007; 1769(5-6):295-307. PubMed ID: 17556080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of plant histone modifications in response to DNA damage.
    Drury GE; Dowle AA; Ashford DA; Waterworth WM; Thomas J; West CE
    Biochem J; 2012 Aug; 445(3):393-401. PubMed ID: 22574698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histone H2A/H2B chaperones: from molecules to chromatin-based functions in plant growth and development.
    Zhou W; Zhu Y; Dong A; Shen WH
    Plant J; 2015 Jul; 83(1):78-95. PubMed ID: 25781491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic gene regulation by plant Jumonji group of histone demethylase.
    Chen X; Hu Y; Zhou DX
    Biochim Biophys Acta; 2011 Aug; 1809(8):421-6. PubMed ID: 21419882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small molecule modulators of histone acetylation and methylation: a disease perspective.
    Selvi BR; Mohankrishna DV; Ostwal YB; Kundu TK
    Biochim Biophys Acta; 2010; 1799(10-12):810-28. PubMed ID: 20888936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.