These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 27288212)

  • 1. Sulfur Radical-Induced Redox Modifications in Proteins: Analysis and Mechanistic Aspects.
    Schöneich C
    Antioxid Redox Signal; 2017 Mar; 26(8):388-405. PubMed ID: 27288212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfur and selenium: the role of oxidation state in protein structure and function.
    Jacob C; Giles GI; Giles NM; Sies H
    Angew Chem Int Ed Engl; 2003 Oct; 42(39):4742-58. PubMed ID: 14562341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox signalling via the cellular thiolstat.
    Jacob C
    Biochem Soc Trans; 2011 Oct; 39(5):1247-53. PubMed ID: 21936797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic Characterization of Reversible Thiol Oxidations in Proteomes and Proteins.
    Boronat S; Domènech A; Hidalgo E
    Antioxid Redox Signal; 2017 Mar; 26(7):329-344. PubMed ID: 27089838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization of sulfide radical cations through complexation with the peptide bond: mechanisms relevant to oxidation of proteins containing multiple methionine residues.
    Bobrowski K; Hug GL; Pogocki D; Marciniak B; Schöneich C
    J Phys Chem B; 2007 Aug; 111(32):9608-20. PubMed ID: 17658786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple roles of cysteine in biocatalysis.
    Giles NM; Giles GI; Jacob C
    Biochem Biophys Res Commun; 2003 Jan; 300(1):1-4. PubMed ID: 12480511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolism of sulfur-containing amino acids.
    Stipanuk MH
    Annu Rev Nutr; 1986; 6():179-209. PubMed ID: 3524616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein Thiol Redox Signaling in Monocytes and Macrophages.
    Short JD; Downs K; Tavakoli S; Asmis R
    Antioxid Redox Signal; 2016 Nov; 25(15):816-835. PubMed ID: 27288099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiolytic modification of sulfur-containing amino acid residues in model peptides: fundamental studies for protein footprinting.
    Xu G; Chance MR
    Anal Chem; 2005 Apr; 77(8):2437-49. PubMed ID: 15828779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfur metabolism and its contribution to malignancy.
    Ward NP; DeNicola GM
    Int Rev Cell Mol Biol; 2019; 347():39-103. PubMed ID: 31451216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mammalian Sulfur Amino Acid Metabolism: A Nexus Between Redox Regulation, Nutrition, Epigenetics, and Detoxification.
    Pajares MA; Pérez-Sala D
    Antioxid Redox Signal; 2018 Aug; 29(4):408-452. PubMed ID: 29186975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Introduction: What we do and do not know regarding redox processes of thiols in signaling pathways.
    Poole LB; Schöneich C
    Free Radic Biol Med; 2015 Mar; 80():145-7. PubMed ID: 25746478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiation-induced reductive modifications of sulfur-containing amino acids within peptides and proteins.
    Chatgilialoglu C; Ferreri C; Torreggiani A; Salzano AM; Renzone G; Scaloni A
    J Proteomics; 2011 Oct; 74(11):2264-73. PubMed ID: 21447412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox Proteomics Applied to the Thiol Secretome.
    Ghezzi P; Chan P
    Antioxid Redox Signal; 2017 Mar; 26(7):299-312. PubMed ID: 27139336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thiyl radical reaction with amino acid side chains: rate constants for hydrogen transfer and relevance for posttranslational protein modification.
    Nauser T; Pelling J; Schöneich C
    Chem Res Toxicol; 2004 Oct; 17(10):1323-8. PubMed ID: 15487892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reductive Stress of Sulfur-Containing Amino Acids within Proteins and Implication of Tandem Protein-Lipid Damage.
    Chatgilialoglu C; Ferreri C
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myoglobin-induced oxidative damage: evidence for radical transfer from oxidized myoglobin to other proteins and antioxidants.
    Irwin JA; Ostdal H; Davies MJ
    Arch Biochem Biophys; 1999 Feb; 362(1):94-104. PubMed ID: 9917333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Respiratory chain cysteine and methionine usage indicate a causal role for thiyl radicals in aging.
    Moosmann B
    Exp Gerontol; 2011; 46(2-3):164-9. PubMed ID: 20850516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms and consequences of protein cysteine oxidation: the role of the initial short-lived intermediates.
    Turell L; Zeida A; Trujillo M
    Essays Biochem; 2020 Feb; 64(1):55-66. PubMed ID: 31919496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease.
    Valko M; Jomova K; Rhodes CJ; Kuča K; Musílek K
    Arch Toxicol; 2016 Jan; 90(1):1-37. PubMed ID: 26343967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.