These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 27288212)

  • 21. [Free oxygen radiacals and kidney diseases--part I].
    Sakac V; Sakac M
    Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding the Reactivity of CO
    Karmakar S; Datta A
    J Phys Chem B; 2017 Aug; 121(32):7621-7632. PubMed ID: 28723153
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein thiyl radical reactions and product formation: a kinetic simulation.
    Nauser T; Koppenol WH; Schöneich C
    Free Radic Biol Med; 2015 Mar; 80():158-63. PubMed ID: 25499854
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Auxiliary iron-sulfur cofactors in radical SAM enzymes.
    Lanz ND; Booker SJ
    Biochim Biophys Acta; 2015 Jun; 1853(6):1316-34. PubMed ID: 25597998
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sulfur Metabolism Under Stress.
    Miller CG; Schmidt EE
    Antioxid Redox Signal; 2020 Dec; 33(16):1158-1173. PubMed ID: 32799544
    [No Abstract]   [Full Text] [Related]  

  • 26. Are free radicals involved in thiol-based redox signaling?
    Winterbourn CC
    Free Radic Biol Med; 2015 Mar; 80():164-70. PubMed ID: 25277419
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3-Nitrotyrosine and related derivatives in proteins: precursors, radical intermediates and impact in function.
    Campolo N; Issoglio FM; Estrin DA; Bartesaghi S; Radi R
    Essays Biochem; 2020 Feb; 64(1):111-133. PubMed ID: 32016371
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Large-scale capture of peptides containing reversibly oxidized cysteines by thiol-disulfide exchange applied to the myocardial redox proteome.
    Paulech J; Solis N; Edwards AV; Puckeridge M; White MY; Cordwell SJ
    Anal Chem; 2013 Apr; 85(7):3774-80. PubMed ID: 23438843
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pathological Impact of Redox Post-Translational Modifications.
    Chahla C; Kovacic H; Ferhat L; Leloup L
    Antioxid Redox Signal; 2024 Jul; 41(1-3):152-180. PubMed ID: 38504589
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Redox Mechanisms in Neurodegeneration: From Disease Outcomes to Therapeutic Opportunities.
    Sbodio JI; Snyder SH; Paul BD
    Antioxid Redox Signal; 2019 Apr; 30(11):1450-1499. PubMed ID: 29634350
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DNA lesions derived from the site selective oxidation of Guanine by carbonate radical anions.
    Joffe A; Geacintov NE; Shafirovich V
    Chem Res Toxicol; 2003 Dec; 16(12):1528-38. PubMed ID: 14680366
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of platelet activity in a changing redox environment.
    Murphy DD; Reddy EC; Moran N; O'Neill S
    Antioxid Redox Signal; 2014 May; 20(13):2074-89. PubMed ID: 24206201
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative study of the oxidation behavior of sulfur-containing amino acids and glutathione by electrochemistry-mass spectrometry in the presence and absence of cisplatin.
    Zabel R; Weber G
    Anal Bioanal Chem; 2016 Feb; 408(4):1237-47. PubMed ID: 26670772
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gas-Phase Unimolecular Dissociation Reveals Dominant Base Property of Protonated Homocysteine Sulfinyl Radical Ions.
    Love-Nkansah CB; Tan L; Francisco JS; Xia Y
    Chemistry; 2016 Jan; 22(3):934-40. PubMed ID: 26531146
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Measuring Reactive Sulfur Species and Thiol Oxidation States: Challenges and Cautions in Relation to Alkylation-Based Protocols.
    Nagy P; Dóka É; Ida T; Akaike T
    Antioxid Redox Signal; 2020 Dec; 33(16):1174-1189. PubMed ID: 32631072
    [No Abstract]   [Full Text] [Related]  

  • 36. From sulfur to homoglutathione: thiol metabolism in soybean.
    Yi H; Ravilious GE; Galant A; Krishnan HB; Jez JM
    Amino Acids; 2010 Oct; 39(4):963-78. PubMed ID: 20364282
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of protein function by reversible methionine oxidation and the role of selenoprotein MsrB1.
    Kaya A; Lee BC; Gladyshev VN
    Antioxid Redox Signal; 2015 Oct; 23(10):814-22. PubMed ID: 26181576
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Redox processes of methionine relevant to beta-amyloid oxidation and Alzheimer's disease.
    Schöneich C
    Arch Biochem Biophys; 2002 Jan; 397(2):370-6. PubMed ID: 11795896
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thiol-based posttranslational modifications in parasites.
    Jortzik E; Wang L; Becker K
    Antioxid Redox Signal; 2012 Aug; 17(4):657-73. PubMed ID: 22085115
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxidative stress, protein damage and repair in bacteria.
    Ezraty B; Gennaris A; Barras F; Collet JF
    Nat Rev Microbiol; 2017 Jul; 15(7):385-396. PubMed ID: 28420885
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.