These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 27288403)

  • 1. Transcription rate and transcript length drive formation of chromosomal interaction domain boundaries.
    Le TB; Laub MT
    EMBO J; 2016 Jul; 35(14):1582-95. PubMed ID: 27288403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution mapping of the spatial organization of a bacterial chromosome.
    Le TB; Imakaev MV; Mirny LA; Laub MT
    Science; 2013 Nov; 342(6159):731-4. PubMed ID: 24158908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Caulobacter requires a dedicated mechanism to initiate chromosome segregation.
    Toro E; Hong SH; McAdams HH; Shapiro L
    Proc Natl Acad Sci U S A; 2008 Oct; 105(40):15435-40. PubMed ID: 18824683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SMC Progressively Aligns Chromosomal Arms in Caulobacter crescentus but Is Antagonized by Convergent Transcription.
    Tran NT; Laub MT; Le TBK
    Cell Rep; 2017 Aug; 20(9):2057-2071. PubMed ID: 28854358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromosome Conformation Capture with Deep Sequencing to Study the Roles of the Structural Maintenance of Chromosomes Complex In Vivo.
    Le TBK
    Methods Mol Biol; 2019; 2004():105-118. PubMed ID: 31147913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Permissive zones for the centromere-binding protein ParB on the Caulobacter crescentus chromosome.
    Tran NT; Stevenson CE; Som NF; Thanapipatsiri A; Jalal ASB; Le TBK
    Nucleic Acids Res; 2018 Feb; 46(3):1196-1209. PubMed ID: 29186514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning the distribution of single-cell chromosome conformations in bacteria reveals emergent order across genomic scales.
    Messelink JJB; van Teeseling MCF; Janssen J; Thanbichler M; Broedersz CP
    Nat Commun; 2021 Mar; 12(1):1963. PubMed ID: 33785756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of chromosome replication in caulobacter crescentus.
    Marczynski GT; Shapiro L
    Annu Rev Microbiol; 2002; 56():625-56. PubMed ID: 12142494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial organization of the flow of genetic information in bacteria.
    Montero Llopis P; Jackson AF; Sliusarenko O; Surovtsev I; Heinritz J; Emonet T; Jacobs-Wagner C
    Nature; 2010 Jul; 466(7302):77-81. PubMed ID: 20562858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution 3D models of Caulobacter crescentus chromosome reveal genome structural variability and organization.
    Yildirim A; Feig M
    Nucleic Acids Res; 2018 May; 46(8):3937-3952. PubMed ID: 29529244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole.
    Bowman GR; Comolli LR; Zhu J; Eckart M; Koenig M; Downing KH; Moerner WE; Earnest T; Shapiro L
    Cell; 2008 Sep; 134(6):945-55. PubMed ID: 18805088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Slow Mobility of the ParA Partitioning Protein Underlies Its Steady-State Patterning in Caulobacter.
    Surovtsev IV; Lim HC; Jacobs-Wagner C
    Biophys J; 2016 Jun; 110(12):2790-2799. PubMed ID: 27332137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entropy-driven spatial organization of highly confined polymers: lessons for the bacterial chromosome.
    Jun S; Mulder B
    Proc Natl Acad Sci U S A; 2006 Aug; 103(33):12388-93. PubMed ID: 16885211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A geometrical model for DNA organization in bacteria.
    Buenemann M; Lenz P
    PLoS One; 2010 Nov; 5(11):e13806. PubMed ID: 21085464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MreB actin-mediated segregation of a specific region of a bacterial chromosome.
    Gitai Z; Dye NA; Reisenauer A; Wachi M; Shapiro L
    Cell; 2005 Feb; 120(3):329-41. PubMed ID: 15707892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication.
    Viollier PH; Thanbichler M; McGrath PT; West L; Meewan M; McAdams HH; Shapiro L
    Proc Natl Acad Sci U S A; 2004 Jun; 101(25):9257-62. PubMed ID: 15178755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grasping at origins.
    Ramamurthi KS; Losick R
    Cell; 2008 Sep; 134(6):916-8. PubMed ID: 18805084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compaction and transport properties of newly replicated Caulobacter crescentus DNA.
    Hong SH; McAdams HH
    Mol Microbiol; 2011 Dec; 82(6):1349-58. PubMed ID: 22085253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the Chromosome Dimer Resolution Site in Caulobacter crescentus.
    Farrokhi A; Liu H; Szatmari G
    J Bacteriol; 2019 Dec; 201(24):. PubMed ID: 31548274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel nucleoid-associated protein coordinates chromosome replication and chromosome partition.
    Taylor JA; Panis G; Viollier PH; Marczynski GT
    Nucleic Acids Res; 2017 Sep; 45(15):8916-8929. PubMed ID: 28911105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.