These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 27288497)

  • 1. RTFBSDB: an integrated framework for transcription factor binding site analysis.
    Wang Z; Martins AL; Danko CG
    Bioinformatics; 2016 Oct; 32(19):3024-6. PubMed ID: 27288497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved linking of motifs to their TFs using domain information.
    Baumgarten N; Schmidt F; Schulz MH
    Bioinformatics; 2020 Mar; 36(6):1655-1662. PubMed ID: 31742324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Romulus: robust multi-state identification of transcription factor binding sites from DNase-seq data.
    Jankowski A; Tiuryn J; Prabhakar S
    Bioinformatics; 2016 Aug; 32(16):2419-26. PubMed ID: 27153645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A DNA shape-based regulatory score improves position-weight matrix-based recognition of transcription factor binding sites.
    Yang J; Ramsey SA
    Bioinformatics; 2015 Nov; 31(21):3445-50. PubMed ID: 26130577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular and structural considerations of TF-DNA binding for the generation of biologically meaningful and accurate phylogenetic footprinting analysis: the LysR-type transcriptional regulator family as a study model.
    Oliver P; Peralta-Gil M; Tabche ML; Merino E
    BMC Genomics; 2016 Aug; 17(1):686. PubMed ID: 27567672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deeper look into transcription regulatory code by preferred pair distance templates for transcription factor binding sites.
    Kulakovskiy IV; Belostotsky AA; Kasianov AS; Esipova NG; Medvedeva YA; Eliseeva IA; Makeev VJ
    Bioinformatics; 2011 Oct; 27(19):2621-4. PubMed ID: 21852305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeFCoM: analysis and modeling of transcription factor binding sites using a motif-centric genomic footprinter.
    Quach B; Furey TS
    Bioinformatics; 2017 Apr; 33(7):956-963. PubMed ID: 27993786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SELEX-Seq: A Method to Determine DNA Binding Specificities of Plant Transcription Factors.
    Smaczniak C; Angenent GC; Kaufmann K
    Methods Mol Biol; 2017; 1629():67-82. PubMed ID: 28623580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MAGGIE: leveraging genetic variation to identify DNA sequence motifs mediating transcription factor binding and function.
    Shen Z; Hoeksema MA; Ouyang Z; Benner C; Glass CK
    Bioinformatics; 2020 Jul; 36(Suppl_1):i84-i92. PubMed ID: 32657363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TEPIC 2-an extended framework for transcription factor binding prediction and integrative epigenomic analysis.
    Schmidt F; Kern F; Ebert P; Baumgarten N; Schulz MH
    Bioinformatics; 2019 May; 35(9):1608-1609. PubMed ID: 30304373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting transcription factor binding motifs from DNA-binding domains, chromatin accessibility and gene expression data.
    Zamanighomi M; Lin Z; Wang Y; Jiang R; Wong WH
    Nucleic Acids Res; 2017 Jun; 45(10):5666-5677. PubMed ID: 28472398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive human transcription factor binding site map for combinatory binding motifs discovery.
    Müller-Molina AJ; Schöler HR; Araúzo-Bravo MJ
    PLoS One; 2012; 7(11):e49086. PubMed ID: 23209563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motif comparison based on similarity of binding affinity profiles.
    Lambert SA; Albu M; Hughes TR; Najafabadi HS
    Bioinformatics; 2016 Nov; 32(22):3504-3506. PubMed ID: 27466627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimally choosing PWM motif databases and sequence scanning approaches based on ChIP-seq data.
    Dabrowski M; Dojer N; Krystkowiak I; Kaminska B; Wilczynski B
    BMC Bioinformatics; 2015 May; 16():140. PubMed ID: 25927199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A widespread role of the motif environment in transcription factor binding across diverse protein families.
    Dror I; Golan T; Levy C; Rohs R; Mandel-Gutfreund Y
    Genome Res; 2015 Sep; 25(9):1268-80. PubMed ID: 26160164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LASAGNA-Search: an integrated web tool for transcription factor binding site search and visualization.
    Lee C; Huang CH
    Biotechniques; 2013 Mar; 54(3):141-53. PubMed ID: 23599922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting transcription factor binding using ensemble random forest models.
    Behjati Ardakani F; Schmidt F; Schulz MH
    F1000Res; 2018; 7():1603. PubMed ID: 31723409
    [No Abstract]   [Full Text] [Related]  

  • 19. Identification of C2H2-ZF binding preferences from ChIP-seq data using RCADE.
    Najafabadi HS; Albu M; Hughes TR
    Bioinformatics; 2015 Sep; 31(17):2879-81. PubMed ID: 25953800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Set cover-based methods for motif selection.
    Li Y; Liu Y; Juedes D; Drews F; Bunescu R; Welch L
    Bioinformatics; 2020 Feb; 36(4):1044-1051. PubMed ID: 31665223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.