These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 27288497)
1. RTFBSDB: an integrated framework for transcription factor binding site analysis. Wang Z; Martins AL; Danko CG Bioinformatics; 2016 Oct; 32(19):3024-6. PubMed ID: 27288497 [TBL] [Abstract][Full Text] [Related]
2. Improved linking of motifs to their TFs using domain information. Baumgarten N; Schmidt F; Schulz MH Bioinformatics; 2020 Mar; 36(6):1655-1662. PubMed ID: 31742324 [TBL] [Abstract][Full Text] [Related]
3. Romulus: robust multi-state identification of transcription factor binding sites from DNase-seq data. Jankowski A; Tiuryn J; Prabhakar S Bioinformatics; 2016 Aug; 32(16):2419-26. PubMed ID: 27153645 [TBL] [Abstract][Full Text] [Related]
4. A DNA shape-based regulatory score improves position-weight matrix-based recognition of transcription factor binding sites. Yang J; Ramsey SA Bioinformatics; 2015 Nov; 31(21):3445-50. PubMed ID: 26130577 [TBL] [Abstract][Full Text] [Related]
5. Molecular and structural considerations of TF-DNA binding for the generation of biologically meaningful and accurate phylogenetic footprinting analysis: the LysR-type transcriptional regulator family as a study model. Oliver P; Peralta-Gil M; Tabche ML; Merino E BMC Genomics; 2016 Aug; 17(1):686. PubMed ID: 27567672 [TBL] [Abstract][Full Text] [Related]
12. Predicting transcription factor binding motifs from DNA-binding domains, chromatin accessibility and gene expression data. Zamanighomi M; Lin Z; Wang Y; Jiang R; Wong WH Nucleic Acids Res; 2017 Jun; 45(10):5666-5677. PubMed ID: 28472398 [TBL] [Abstract][Full Text] [Related]
13. Comprehensive human transcription factor binding site map for combinatory binding motifs discovery. Müller-Molina AJ; Schöler HR; Araúzo-Bravo MJ PLoS One; 2012; 7(11):e49086. PubMed ID: 23209563 [TBL] [Abstract][Full Text] [Related]
14. Motif comparison based on similarity of binding affinity profiles. Lambert SA; Albu M; Hughes TR; Najafabadi HS Bioinformatics; 2016 Nov; 32(22):3504-3506. PubMed ID: 27466627 [TBL] [Abstract][Full Text] [Related]
15. Optimally choosing PWM motif databases and sequence scanning approaches based on ChIP-seq data. Dabrowski M; Dojer N; Krystkowiak I; Kaminska B; Wilczynski B BMC Bioinformatics; 2015 May; 16():140. PubMed ID: 25927199 [TBL] [Abstract][Full Text] [Related]
16. A widespread role of the motif environment in transcription factor binding across diverse protein families. Dror I; Golan T; Levy C; Rohs R; Mandel-Gutfreund Y Genome Res; 2015 Sep; 25(9):1268-80. PubMed ID: 26160164 [TBL] [Abstract][Full Text] [Related]
17. LASAGNA-Search: an integrated web tool for transcription factor binding site search and visualization. Lee C; Huang CH Biotechniques; 2013 Mar; 54(3):141-53. PubMed ID: 23599922 [TBL] [Abstract][Full Text] [Related]
19. Identification of C2H2-ZF binding preferences from ChIP-seq data using RCADE. Najafabadi HS; Albu M; Hughes TR Bioinformatics; 2015 Sep; 31(17):2879-81. PubMed ID: 25953800 [TBL] [Abstract][Full Text] [Related]
20. Set cover-based methods for motif selection. Li Y; Liu Y; Juedes D; Drews F; Bunescu R; Welch L Bioinformatics; 2020 Feb; 36(4):1044-1051. PubMed ID: 31665223 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]